Температура на марсе

Содержание

>Какая температура на Марсе?

Почему на Марсе холодно?

Марс — это суровый, холодный мир, условия на котором очень отличаются от привычных нам. Несмотря на то, что Солнце (при взгляде с поверхности Марса) кажется здесь лишь немногим меньше, чем при наблюдении с Земли, на самом деле Марс находится от него на расстоянии 228 миллионов километров, то есть значительно дальше, чем наша планета (149,5 млн. км.). Соответственно, и солнечной энергии этой планете достается на четверть меньше, чем Земле.

Однако расстояние от Солнца — только одна из причин того, почему планета Марс — холодная планета. Вторая причина — это слишком тонкая атмосфера Марса, состоящая на 95% из углекислого газа, и неспособная удержать достаточного количества тепла.

Почему атмосфера так важна? Потому что для нашей (и любой другой) планеты, она служит своего рода «термобельем», или «одеялом», препятствующим слишком быстрому остыванию поверхности. А теперь представьте, что если на Земле, с её весьма плотной атмосферой, в зимние периоды температура падает в отдельных регионах до -50-70 градусов по Цельсию, насколько холодно должно быть на Марсе, чье одеяло-атмосфера тоньше земной в 100 раз!

Снег на Марсе — пейзаж, как его увидел один из марсоходов на поверхности красной планеты. Честно говоря, у нас в Якутии я наблюдал точь в точь такие же пейзажи

Температура на Марсе днем и ночью

Итак, Марс это безжизненная и холодная планета, из-за тонкой атмосферы напрочь лишенная шанса когда-нибудь «согреться». Однако какая температура обычно наблюдается в марсианских условиях?

Средняя температура на Марсе составляет что-то около минус 60 градусов по Цельсию. Чтобы вы понимали насколько это холодно, то вот и пища к размышлению: на Земле средняя температура составляет +14,8 градусов, так что да, на Марсе весьма и весьма «прохладно». Зимой, в районе полюсов, температура на Марсе может опускаться до -125 градусов по Цельсию независимо от времени суток. Летним днем, вблизи экватора, на планете относительно тепло: до +20 градусов, однако ночью столбик термометра снова упадет до -73. Ничего не скажешь — условия просто экстремальные!

С падением температуры, частички двуокиси углерода в атмосфере Марса замерзают и выпадают в виде инея, покрывая поверхность и скалы планеты подобно снегу. Марсианский «снег» мало напоминает земной, ведь его снежинки по размерам не превышают размеров клеток-эритроцитов в человеческой крови. Скорее такой «снег» напоминает разряженный туман, оседающий на поверхность планеты по мере замерзания. Впрочем, как только настанет марсианское утро, и атмосфера планеты начнет прогреваться, углекислый газ вновь превратится в летучее соединение, и снова покроет всё вокруг белым туманом, пока не испарится полностью.

Ледяные шапки Марса в хороший телескоп видны даже с земли

Сезоны (времена года) на Марсе

Как и у нашей планеты, ось Марса несколько наклонена относительно плоскости, что в свою очередь означает, что также как на Земле, на Марсе есть и 4 сезона, или времени года. Однако из-за того, что орбита Марса вокруг Солнца напоминает не ровный круг, а несколько смещена в сторону относительно центра (солнца), длина марсианских времен года тоже неравномерна.

Так, в северном полушарии планеты, самым длинным сезоном является весна, которая длится на Марсе целых семь земных месяцев. Лето и осень примерно шесть месяцев, а вот марсианская зима — самое короткое время года, и длится только четыре месяца.

Во время марсианского лета, полярная ледяная шапка планеты, состоящая в основном диоксида углерода, значительно уменьшается в размерах и может совсем исчезнуть. Впрочем, даже короткой, но необычно холодной марсианской зимы достаточно, чтобы нарастить её снова. Если где-то на Марсе и есть вода, то скорее всего искать её нужно на полюсе, где она заключена в ловушке под слоем замерзшего углекислого газа.

А вот так марсианские ледяные шапки выглядят вблизи (компьютерное моделирование)

Что ещё у нас есть про Марс?

  • Размер Марса и Земли
  • Как далеко до Марса?
  • Почему Марс — красная планета?
  • Атмосфера Марса: состав, климат и погода
  • Марс: краткая информация о планете

Температура красной планеты

Марс находится дальше от Солнца, чем Земля, поэтому, как и следовало ожидать, температура на Марсе холоднее. По большей части на планете очень холодно. Исключение составляют только летние дни на экваторе. Даже на экваторе, температура на планете Марс ночью падает ниже нуля. В летние дни, днем она может быть около 20 градусов по Цельсию, но ночью падает до -90 С.

Орбита

Марс имеет высоко эллиптическую орбиту, так что температура меняется совсем немного, когда планета вращается вокруг Солнца. Так как он имеет наклон оси похожий на Земной (25,19 на Марс, а на Земле 26,27), то планета имеет сезоны. Добавьте к этому тонкую атмосферу, и вы сможете понять, почему планета не в состоянии удерживать тепло. Марсианская атмосфера состоит из более чем 96% углекислого газа. Если планета была в состоянии удержать атмосферу, то углекислый газ вызвал бы парниковый эффект, который нагрел бы его.

Следы водной эрозии, снимок Mars Odyssey

Орбитальные аппараты передали изображения, которые указывают на эрозию, вызванную жидкой водой. Это указывает на то, что Марс когда-то был значительно теплее и влажнее. Эрозия не исчезла, потому что в настоящее время нет жидкой воды или тектоники плит, чтобы сильно изменить пейзаж. Есть ветер, но он не достаточно сильный, чтобы изменить поверхность.

Важность теплого климата

Наличие теплой погоды и жидкой воды является важным по нескольким причинам. Одна из них, это то, что жидкая вода имеет важное значение для эволюции жизни. Некоторые ученые до сих пор придерживаются мнения, что микробная жизнь существует глубоко под поверхностью, где теплее и вода может существовать в жидком виде.

Колонизация

Если люди когда-нибудь колонизируют планету, они должны иметь источники воды. Пилотируемая миссия займет около двух лет, и количество груза на борту корабля будет ограничено. Одно из решений, заключается в том, что водяной лед может быть расплавлен, а затем очищен, но найти жидкую воды будет еще более целесообразным.

Температура это незначительное препятствие для раннего освоения человеком планеты, в то время как наличие воды гораздо более существенно. Все, что нам нужно сделать, это найти способ добраться до Марса и обратно без необходимости тратить два года в тесных космических аппаратах.

Марс – это один из представителей земной группы, средняя температура поверхности которой ниже нуля. Он ближайший из наших соседей, а потому его исследование особо интересует человечество. В перспективе это вариант первой межпланетной колонизации. А знания температурных режимов это понимание изначальных условий колонизации. Сведения о температурном режиме Марса позволят строить теории о температурах других планет.

Какая температура на Марсе

Первые наблюдения за красной планетой начались еще в 18 веке. Тогда это были просто наблюдения, которые не могли ничего сказать о температуре Марсе. Но уже в 20 годах прошлого века ученые помещали термометр в фокус телескопа-рефлектора, тем самым определяя температуру поверхности. На тот момент показатели у разных ученых разнились: от -28 градусов до -60. Ученые обладали разным оборудованием с разной погрешностью измерений, но столь большой разброс только подогрева научный интерес.

В 50 годы накопилось достаточно информации, стали известны факты о положительных температурах на экваторе. В 1956 году группой американских ученых были проведены исследования, которые подтверждали низкие температуры на полюсах.

Минимальная температура, зафиксированная на полюсе Марса -153 0С.

Наибольшую ценность представляли наблюдения во время Великого противостояния, то есть момента максимального сближения Марса и Земли. Позднее с развитием научного прогресса спустя несколько неудачных попыток запуска марсоходов удалось получить первые снимки полюсов красной планеты. Это позволило подтвердить температуру на полюсах в -125 градусов Цельсия. Наука не стоит на месте и год от года совершаются новые открытия.

Средняя температура на поверхности красной планеты -63 0С.

При этом на экваторе термометр показывает привычные 18 0С. Вполне достаточно для выращивания растений и основания колоний, но есть весьма емкая проблема. Давление в нем достигает величины 0,6 кПа, что очень мало. Для сравнения: одна атмосфера равняется примерно 100 кПа, а это в 110 раз больше озвученного значения. Из-за этого воздушное пространство разряжено, в таком случае на небольших разницах высот в 1,5-2 метра возникает разница в несколько десятков делений термометра. В жару верх грунта может прогреваться до 27 0С, но на небольшой возвышенности быстро падает до нуля.

В 2004 году на планету приземлился один из марсоходов исследовательской миссий НАСА. Аппарат назывался «Спирит». Устройство действовало на планете до января 2009 и в числе прочих данных, были получены новые сведения о температуре на поверхности.

Максимальная температура, зафиксирована на экваторе Марса +35 0С.

Это на 5 градусов больше предыдущего значения, что свидетельствует о возможном потеплении.

Марсианские сутки всего на 40 минут дольше земных. При этом температура днем и ночью может колебаться от +8 днем до -120 ночью.

Год на красной планете длится в два раза дольше земного, но при этом также делится на 4 сезона. Каждое время года здесь отличается своим температурным режимом.

  • Летом почва прогревается до 20 0С, но ночью сразу же опускается до -60. На экваторе этот показатель характеризуется +27 0С до полудня, опускается до -50 к вечеру.
  • Осенью дневная температура колеблется в районе 2-3 градусов, опускаясь ночью до 68-73 ниже нуля. Это средние показатели, тогда как минимальная температура осенью достигает -83. На экваторе в это время года зарегистрирован максимум в +8 градусов.
  • Зимой показатели меняются. Днем температура колеблется от -1 до 6 градусов, хотя на экваторе иногда можно зарегистрировать температуру в +8. К вечеру земля начинает промерзать, и ночные температуры колеблются от -76 до -88 градусов. Минимальная температура ночью в районе полюсов находится на отметке -123.
  • Весна не радует земными оттепелями. Это один из самых холодных сезонов на красной планете. Средняя температура днем -16, тогда как ночью опускается до -87. С другой стороны, это время отличается не столь резкими перепадами температур, поэтому весну можно назвать самым предсказуемым временем года.

Климат Марса суров. Днем и ночью нередки пылевые ураганы, которые вносят дополнительный разлад. На специальных радарах это явление выглядит как хаотично перемещающееся тепловое облако. Энергия от поверхности быстро рассеивается, потом поднимается новая и так до бесконечности. Пыльные бури длятся в течение двух месяцев, что мешает становлению стабильного фона. Порядка 10-13 процентов тепла, которое производит ядро планеты, разносится ураганами по всей поверхности.

Бури образуются в результате большого разрыва температуру грунта и на возвышенностях. Частицы песка задерживают на себе солнечные лучи, ограждая поверхность от дополнительного тепла. В итоге еще как минимум 20 процентов энергии просто не долетает до грунта.

Ученые выделяют оазисы, где скачки температур не столь велики, как в остальных местах. В озере Феникса и землях Ноя диапазон колебаний находится в пределах от +22 до -53, что действительно мягче, чем на равнинах планеты. Эти оазисы расположены недалеко от полюсов и представляют собой впадины глубиной по нескольку километров. Благодаря этому, с одной стороны воздух в них более густой, а с другой накапливаются снежные массы, которые выступают в роли теплоизолятора и способствуют сохранению тепла.

Особенно выделяется равнина Эллада. Этот оазис представляет собой самую глубокую впадину, образовавшуюся в прошлом от огромного астероида. Давление на дне в девять раз выше, чем в других частях планеты, соответственно и температурные перепады ниже.

Отметка термометра во впадине не поднимается выше нуля, но и редко опускается ниже – 50 0С. В сравнении с остальными участками отличие меньше почти в два раза. Благодаря пониженному содержанию, зимой во впадине образуется иней – замерзшие частицы CO2, напоминающие густой туман. Именно из-за него астрономы и обнаружили в 18 веке Элладу.

Почему на Марсе холодно

Теплу не за что зацепиться, и оно расходится. В результате образуется замкнутый цикл, когда резкие скачки с плюса на минус в разных зонах вызывают глобальные пылевые бури, которые еще больше рассеивают тепло по всем закоулкам. Из-за разряженной атмосферы такие ураганы способны переносить большие массы пыли и песка на дальние расстояния.

Воздушная среда не способна задержать и отразить энергию обратно к псевдосфере, вследствие чего, она вместо расхода на нагрев уходит в космос.

Причины, вызывающие понижение температуры на Марсе.

  • Удаленность от солнца. Марс находится на расстоянии 228 миллионов километров от солнца, тогда как Земля только в 150. Разница почти в полтора раза. Планета получает 43 процента от объема, тепла, которое достается Земле.
  • Отсутствие сильного магнитного поля – как результат отсутствие атмосферы. В результате воздействия солнечных лучей на разряженную атмосферу планеты происходит процесс сдувания атмосферы солнечным ветром. Для сравнения: атмосфера Венеры настолько плотная, что только четверть солнечных лучей достигают поверхности, но даже с таким результатом средняя температура планеты 500 градусов Цельсия. Все потому что поглощенная энергия не накапливается, а покидает планету в виде инфракрасного теплового излучения, которое с трудом проходить через атмосферу. На поверхность Марса попадает вся солнечная энергия, предназначенная этой планете. Но из-за разряженного воздуха любого количества энергии будет недостаточно для существенного повышения температуры.
  • Пылевые бури. Поглощенная энергия очень быстро разносится пылевыми завихрениями и расходуется на оттаивание CO2.

Как менялась температура на Марсе

О климатическом режиме далекого прошлого нашего галактического соседа ходит достаточно много споров. Дело в том, что своеобразный рельеф имеет отметины очень похожие на те, что оставляет вода в своем жидком состоянии. То есть, когда-то здесь текли реки и были озера. Этот временной период ученые определяют, как 3.5 миллиарда лет назад. Если предположить, что планета была покрыта сетью рек и озер, то атмосфера была в 2-3 раза плотнее. Значит и температура поверхности была в разы больше и не опускалась ниже отметки в -30 градусов.

Солнечное излучение в то время было на 30% меньше. Условия для прогревания были хуже, но жидкость была. Это возможно только при высоких тепловых величинах, за счет повышенного содержания CO2 газа. В газообразном состоянии это вещество может накрывать псевдосферу непроницаемой изнутри пленкой. Это так называемый парниковый эффект, который способен прогреть окружающее пространство и способствовать появлению первых форм жизни. Но CO2 в реках и озерах оставляет карбиды, которые должны были выпасть в осадок на дне. Таких отложений нет, следовательно, атмосфера была более плотной. Возможно из-за повышенного содержания кислорода, температура была более высокой. Ученые сходятся во мнении: несколько миллиардов лет назад газовоздушная смесь здесь была влажной и теплой. Грунт прогревался до параметров в районе 28 0С.
После этого он попал в метеоритный поток, регулярные удары привели к уменьшению давления и исчезновению или замерзанию парникового газа, что и стало причиной дестабилизации параметров.

В изучении более поздней истории: два-три миллиона лет назад, все исследователи однозначно сходятся во мнениях: сейчас идет очередной ледниковый период. Помимо отметин рек и озер, имеются все признаки рельефа изрезанного ледяными массивами. В пользу этого периода говорит и уменьшение интервала температурных колебаний. Верхний слой постепенно становиться теплее, об это заявили профессоры из NASA в 2016 году. Было зарегистрировано повышение по площади на 3-5 0С.

Тем не менее, такой сдвиг вряд ли можно назвать положительным или отрицательным. Характеристики оранжевого соседа зависит не только от этого. Большое влияние оказывает смещающаяся ось вращения, которая за последние 40000 лет меняла наклон от 100 до 500. Это просто объемные значения в планетарных масштабах. После завершения подобных процессов, меняются области, прогреваемые УФ светом дольше остальных, а как следствие, смещаются положения экваторов и полюсов. Именно так ученые и получают львиную часть данных о существовавших ситуациях. Тепла становится меньше на поверхности, так как порода не успевает прогреться после прошлых изменений. Малая доля научных деятелей считает, что эти следы оставлены непрерывным движением ледяных шапок. Этот процесс происходит из-за отсутствия крупных спутников, которые могли бы корректировать положение огненной планеты в галактике.

Фобос и Дэймос вообще не являются таковыми в прямом понимании этого слова – это астероиды, которые не могут повлиять на температуру поверхности. Но исследования позволяют надеяться, что через несколько веков здесь установится комфортные для человека условия.

На планете крайне неблагоприятная для существования человека обстановка. Этот факт результат долгих космических процессов, не до конца понятных ученым, но одно можно сказать точно: когда-то здесь были возможны некоторые формы жизни. Есть вероятность, что с окончанием современного образования ледников, здесь вновь возникнут комфортные условия, а температурные перепады исчезнут или будут незначительны.

Пригодилась информация? Плюсани в социалки!

  • Почему сутки на Марсе называют сол
  • Чему равно расстояние до Марса
  • Вулкан Олимп марсианский Гигант

Показатели марсианской температуры

Современные научные технологии помогают человечеству открывать тайны Солнечной системы. Внимание многих ученых приковано к четвертой по удаленности от Солнца планете. Здесь активно ведется поиск следов жизни, изучаются возможности будущей колонизации. Исследовано, что температура на Марсе не является комфортной для человечества. Если люди решатся обживать новый мир, потребуются условия для поддержания комфортного микроклимата.

Усредненные показатели

Изучение климата на Красной планете проводилось аппаратами «Викинг» (1976 г.), «Спирит» (2004 г.), «Кьюриосити» (2013 г.), Maven (2017 г.). Полученные данные позволили ученым предположить, что в прошлом он был более влажным и теплым, на поверхности существовала вода в жидком состоянии, формировались облака и шли осадки.

Современный Марс обладает разреженной атмосферой (по сравнению с Землей). Его климат неблагоприятен для земных организмов, но кое в чем близок к существующему на третьей планете. Однако вследствие большей удаленности от Солнца марсианской поверхности достается меньше тепла. На экваторе самые высокие температуры достигают 20-27°С, а на полюсах падают до -120°С. Основные температурные показатели:

  • абсолютный максимум: 30°С;
  • средний максимум: -5,7°С;
  • средний минимум: -78,5°С;
  • абсолютный минимум: -127°С.

Марсоход «Спирит». Credit: trashbox.ru.

Колебания температуры днем и ночью

Марсианские сутки дольше земных на 40 минут. Однако из-за неспособности разреженной атмосферы удерживать тепло температура на его поверхности подвержена существенным колебаниям. Планетный год делится на 4 сезона и длится около 670 земных суток.

Для каждого времени года характерна своя температура Марса днем и ночью:

  • летом в одном и том же месте поверхность прогревается до 20°С в дневное время, опускается ниже -55°С в ночной период;
  • осенью температуры в течение светового дня достигают 5-8°С, в темное время падают до -83°С;
  • в зимний период днем показатели составляют от -1°С до 6°С (на экваторе — до 8°С), ночью грунт промерзает до -87°С, а в области полюсов регистрируют -123°С;
  • весна — это некомфортный, но предсказуемый сезон: днем почва прогревается до -16°С, в ночное время она остывает до -87°С.

Зима на планете Марс. Credit: donetsk.kp.ru.

Времена года в каждом из полушарий длятся по-разному. В северном наблюдаются короткие и относительно теплые зимы, а лето длительное и прохладное. В южном зимы более холодные и долгие, однако летний период краткий и теплый. Это объясняется траекторией вращения планеты. Во время наступления зимы в северном полушарии Марс проходит через перигелий орбиты (ближайшее расстояние к Солнцу), а когда в южном — через афелий (максимальное удаление).

Ученые нашли оазисы, где колебания температур менее выражены. Они находятся на плато Солнца (в области озера Феникс) и на земле Ноя. Здесь поверхность прогревается в летнее время до 22°С днем и остывает до -53°С ночью. Зимой показатели составляют -43°С в световой период и -103°С, когда область планеты закрыта от Солнца.

Разлад в марсианскую атмосферу вносят пылевые ураганы, которые могут образовываться в любое время суток. На радарах землян природное явление регистрируется как тепловое облако, энергия которого быстро рассеивается. Ураганы длятся по два месяца, разносят по поверхности планеты до 13% тепла.

С приходом ночи атмосфера планеты может генерировать внезапные снежные бури, нагоняемые мощными ветрами. Исследования аппарата «Феникс» опровергли мнение, что снежинки оседают на поверхность планеты медленно, в безветренных условиях. Выяснилось, что процесс идет скоротечно, во время резкого высвобождения тепла из марсианской атмосферы. Объем выпадающих осадков при этом невелик.

Космический аппарат «Феникс». Credit: howlingpixel.com.

Марсианский снег — частички двуокиси углерода. Он напоминает разреженный туман, оседающий на поверхность. С наступлением нового дня углекислый газ нагревается и снова поднимается на поверхность. Окутывая почву туманом, он постепенно испаряется.

Проявления перепада марсианских температур: пылевые бури, пылевые дьяволы (смерчи), водяной пар, времена года. Глобальная пылевая буря была отмечена в период с сентября 1971 г. по январь 1972 г. Она подняла в атмосферу почти 10 млрд тонн пыли.

Исторически зафиксированные изменения

Европейское космическое агентство обозначило несколько периодов марсианской геологической истории. Более 4,5 млрд лет назад существовала Филлоциановая эра. В атмосфере находилось достаточно воды, а вулканическая активность провоцировала потепление. Это привело к выбросу большого объема серы, повышению кислотности в окружающей среде.

В Гесперийскую эру (3,5-2,5 млрд лет назад) северная часть Марса была покрыта океаном, а в низких широтах находилось большое количество водоемов и рек. Температура прогревалась до 50 градусов по Цельсию. Считается, что в это время климат был максимально приближен к земному. Вода исчезла с наступлением Амазонийской эры. Остатки влаги представлены в виде полярных шапок.

Есть мнение, что в древности планета обладала магнитным полем, которое защищало атмосферу. После его исчезновения солнечный ветер истончил защитный слой, что привело к исчезновению воды и резкому ухудшению погодных условий.

Причины холодного климата

Марс — негостеприимный мир, климат в котором намного суровее, чем в Антарктиде. Тепло здесь не задерживается в атмосфере, быстро расходуется и уходит в космос.

Пылевая буря на Марсе. Credit: versiya.info.

Факторы, которые этому способствуют:

  • удаленность от Солнца, отчего планете достается на 43% меньше тепла, чем Земле;
  • пылевые бури, из-за которых энергия рассеивается и расходуется на оттаивание двуокиси углерода;
  • разреженный воздух и отсутствие магнитного поля, что препятствует «захвату» и удержанию поступающей энергии Солнца.

Ученые продолжают исследования и пытаются понять процессы, происходящие в недрах Марса, изучить влияние его ядра на температуру поверхности. Важными остаются вопросы и о том, можно ли установить на планете комфортный для человека климат и каковы условия этого.

Солнечная система > Система Марс > Планета Марс > Температура на Марсе

Карта распределения температуры на поверхности Марса

Какая температура на Марсе: значение днем и ночью, летом и зимой. Узнайте среднюю температуру атмосферы и поверхности Марса, описание климата и исследования.

Красная планета расположена дальше от Солнца, чем Земля, поэтому планете достается меньше нагрева. Если говорить точнее, то это крайне прохладное место. Исключение наступает лишь в летний период. Но даже в это время температура на Марсе падает ниже 0°C. Летом Красная планета может прогреться до 20°C, а ночью температура падает до -90°C.

Марс перемещается по эллиптическому пути, поэтому показатель температуры поверхности постоянно меняется, но незначительно. По осевому наклону в 25.19 градусов напоминает земной (26.27), а значит обладает сезонами. Прибавим сюда и тонкий атмосферный слой и поймем, почему планете не удается сберечь хотя бы минимальный нагрев. Атмосфера на 96% представлена углекислым газом. Если бы она была плотнее, то образовался бы парниковый эффект и мы получили вторую Венеру.

Ученые выяснили, что частички марсианского углекислого газа практически приравниваются к размерам человеческих эритроцитов. В этой художественной интерпретации марсианский снег виден как туман, оседающий на поверхность

Как менялась температура на Марсе?

А как насчет прошлого? Марсоходы и зонды демонстрируют участки с эрозией, к чему могла привести жидкая вода. Это намекает на то, что ранее Марс был не только теплым, но и влажным. Однако Красная планета уже 3 млрд. лет остается сухой и морозной. Некоторые считают, что процесс остывания запустился 4 млрд. лет назад. Однако следы эрозии не исчезли, потому что нет воды в жидком состоянии или тектоники плит. Присутствует ветер, но его силы не хватает, чтобы трансформировать поверхность.

Исследователям важно отслеживать теплую погоду и жидкую воду, потому что они необходимы для зарождения и эволюции жизни. К тому же, если мы планируем дальнейшее изучение и колонизацию, то нам не обойтись без водных источников. На миссию уйдет минимум несколько лет. До прибытия экипажа можно расплавить водяной лед и очистить его.

Если с температурой Марса еще можно бороться, то вода выступает главным препятствием для колонизации. Осталось лишь разработать технологию, которая безопасно доставит нас туда и обратно. Теперь вы знаете, как температура на Марсе днем и ночью.

Как вы умрёте на Марсе

Человек стремится к Марсу. NASA планирует высадить астронавтов на поверхности планеты к 2030 году. Частные космические компании вроде SpaceX выражают интерес в колонизации Марса, а проект Mars One уже подготовил список гражданских, которые получат билет в один конец в 2020 году.
Пока многие мечтают провести отведенные им дни на Красной Планете, эти дни можно будет сосчитать по пальцам рук. Окружающая среда Марса сильно отличается от Земли, поэтому инженерам придется решить огромное количество технологических проблем, связанных с безопасностью людей на планете. Далеко не все решения есть, и разработки могут занять долгие годы. Если сильно поспешить с полётом, можно закончить путешествие трагично.
Popular Science составил список проблем, из-за которых человек на Марсе погибнет.

Вы разобьётесь

Давайте представим, что вы много месяцев провели в космическом путешествии и наконец добрались до орбиты Марса. Осталось самое простое — спуститься на поверхность. И здесь возникает проблема: атмосфера Марса в 100 раз менее плотная, чем атмосфера Земли.
На Земле для посадки космического корабля используют парашюты, и атмосфера помогает тормозить полёт. Чем больше объект — тем сложнее предотвратить его приближение к поверхности. На Марсе мягко посадить аппарат будет гораздо сложнее.
Брет Дрэйк, заместитель руководителя исследовательских миссий NASA, говорит, что с существующими технологиями получится посадить на Марс объект массой в одну тонну. Для сравнения: максимальная масса Dragon с грузом для МКС — более семи тонн. Дрэйк добавляет, что NASA нужно сажать за один раз от 20 до 30 тонн, чтобы доставить астронавтов, аппаратуру и провизию.

Агентству нужно спроектировать уникальную систему торможения. Сейчас ученые работают над Low-Density Supersonic Decelerator — это сверхзвуковой замедлитель в форме диска. Надувной шар позволит увеличить площадь поверхности спускаемого аппарата, чтобы замедлить скорость в атмосфере Марса. Аппарат будут тестировать на Земле в июне, на Гаваях.
Mars One и SpaceX пока не рассказывали, как они планируют спустить свои аппараты на поверхность Марса.

Вы замёрзнете

Астронавтам придется бороться с суровой погодой. Средняя температура на поверхности Марса — минус 62 градуса Цельсия, но она меняется в зависимости от сезона, времени дня и местоположения. У экватора температура 27 градусов, а у полюсов 175 градусов ниже нуля.
Ученые и инженеры придумали много способов, которые позволяют космонавтам и астронавтам бороться с сильными колебаниями температур — спасибо Международной космической станции. Когда МКС расположена на солнечной стороне, она выдерживает 90 градусов, а на ночной стороне — минус 130 градусов. Скафандры астронавтов и космонавтов и сама станция оснащены системами контроля за температурой, которые уберегают и от холода, и от жары.
Эти системы спроектированы для работы в вакууме. Для атмосферы Марса придется работать над новыми технологиями.
Южная полярная шапка Марса

Вы умрёте от голода

Жизнь на поверхности Марса будет чем-то похожа на жизнь в Антарктиде. Всю еду, инструменты и другой груз станции в Антарктиде получают с других континентов, и такие поставки случаются не очень часто. В случае с Марсом, поставки будут гораздо реже — чтобы долететь до планеты, понадобится от 9 до 12 месяцев с момента взлёта, который может откладываться по разным причинам. Чтобы колония смогла выжить, нужно что-то выращивать самостоятельно — например, создать ферму.
Mars One хочет выращивать сельскохозяйственные культуры в помещениях с искусственным освещением. 80 квадратных метров площади займут растения. Поливать растения будут водой, которую найдут в почве планеты. Углекислый газ овощи получат от экипажа из четырех человек.
Исследователи Массачусетского технологического института нашли слабое место в этом плане. По их подсчетам, углекислого газа от четырех человек будет мало, чтобы поддерживать жизнь достаточного количества растений. Экипаж из большего количества человек проблему не решит: в любом случае, еды хватит половине команды.
Надо либо выращивать меньше культур — но тогда еды будет меньше, чем нужно — либо найти способ получения дополнительного углекислого газа. Например, делать его из кислорода. Но в этом случае поселенцам придется меньше дышать.

Вы взорвётесь

Растения на Марсе нужны не только в качестве пищи — они являются жизненно важным источником кислорода. Использовать этот источник лучше, чем постоянно отправлять на Марс баки с кислородом, ведь каждый килограмм груза стоит немалых денег.
Исследования показали, что растения способны расти в марсианской почве, но пока никто не выращивал сельскохозяйственные культуры с Земли в условиях марсианской гравитации. Нужно провести новые исследования и выяснить, способна ли растительность выжить на этой планете. Если ответ будет положительным — поселенцы смогут прокормиться. Кроме того, они получат кислород.
Но большое количество кислорода в замкнутом пространстве представляет собой проблему. Экипаж может отравиться им и, что еще более страшно, кислород может взорваться. Команде нужен будет метод выделения лишнего кислорода из воздуха. На Земле есть методы для этого, но на Марсе их не проверяли.
У NASA уже есть план по улучшению экосистемы Марса. Исследователи хотят отправить на планету выбранные бактерии — например, цианобактерии. Они способны к фотосинтезу, сопровождающемуся выделением кислорода, и должны выжить на поверхности планеты. А проект Mars Oxygen ISRU Experiment (MOXIE) будет выделять кислород из углекислоты.

Вы можете не долететь

До всех возможных сценариев можно не дожить из-за космической радиации. Это излучение легко проходит сквозь обшивку космического корабля, а его долгое воздействие, по данным экспериментов на мышах, влияет на работу мозга. Более того — она вызывает раковые опухоли.
На МКС астронавты защищены от космического излучения благодаря магнитному полю Земли. Этого фактора не будет во время длительного путешествия в космосе. Влияние излучения на каждого конкретного человека может быть индивидуальным, а женщинам, возможно, вообще не стоит лететь.

NASA ищет таланты

Пока многие технологии не готовы, NASA ищет помощи у энтузиастов. Агентство проводит конкурсы среди разработчиков и ищет идеи, которые позволят астронавтам выжить.
Марс находится за 225 миллионов 300 тысяч километров от Земли — доставка грузов займёт много времени и будет очень дорогой. В конкурсе «Путешествие на Марс» NASA ждёт лучшие идеи по минимизации зависимости от Земли, а победители получат по $5000.
Позже NASA анонсировало конкурс напечатанных на 3D-принтере жилищ для других планет с призовым фондом в $2,25 миллиона. Речь идёт о разработке жилищ для проживания на другой планете, включая Марс.

Климат Марса

Сейчас на Марсе сухой и холодный климат (слева), но на ранних этапах эволюции планеты, скорее всего, была жидкая вода и плотная атмосфера (справа).

В настоящее время Марс — наиболее интересная для изучения планета Солнечной системы. Поскольку он обладает атмосферой, хотя и очень разреженной, по сравнению с земной, можно говорить о процессах в ней, формирующих погоду, а следовательно, и климат. Он не особо благоприятен для человека, однако наиболее близок к существующему на нашей планете. Предположительно в прошлом климат Марса мог быть более тёплым и влажным, а на поверхности присутствовала жидкая вода и даже шли дожди.

Изучение

История наблюдений

Этот раздел статьи ещё не написан. Согласно замыслу одного или нескольких участников Википедии, на этом месте должен располагаться специальный раздел.
Вы можете помочь проекту, написав этот раздел.

Текущие наблюдения

Этот раздел статьи ещё не написан. Согласно замыслу одного или нескольких участников Википедии, на этом месте должен располагаться специальный раздел.
Вы можете помочь проекту, написав этот раздел.

Погода

Температура

Средняя температура на Марсе значительно ниже, чем на Земле: −63°С. Поскольку атмосфера Марса сильно разрежена, она плохо сглаживает суточные колебания температуры поверхности. При наиболее благоприятных условиях летом на дневной половине планеты воздух прогревается до 20° С (а на экваторе — до +27 °C) — вполне приемлемая температура для жителей Земли. Максимальная температура воздуха, зафиксированная марсоходом «Спирит», составила +35 °C. Но зимней ночью мороз может достигать даже на экваторе от −80 °C до −125° С, а на полюсах ночная температура может падать до −143 °C. Однако суточные колебания температуры не столь значительны, как на безатмосферных Луне и Меркурии. На Марсе существуют температурные оазисы, в районах «озера» Феникс (плато Солнца) и земли Ноя перепад температур составляет от −53°С до +22°С летом и от −103°С до −43°С зимой. Таким образом, Марс — весьма холодный мир, климат там намного суровее, чем в Антарктиде.

Климат Марса, 4.5ºS, 137.4ºE (с 2012 — до сегодняшнего)
Показатель Янв. Фев. Март Апр. Май Июнь Июль Авг. Сен. Окт. Нояб. Дек. Год
Абсолютный максимум, °C 6 6 1 0 7 23 30 19 7 7 8 8 30
Средний максимум, °C −7 −18 −23 −20 −4 0 2 1 1 4 −1 −3 −5,7
Средний минимум, °C −82 −86 −88 −87 −85 −78 −76 −69 −68 −73 −73 −77 −78,5
Абсолютный минимум, °C −95 −127 −114 −97 −98 −125 −84 −80 −78 −79 −83 −110 −127
Источник: Centro de Astrobiología , Погодный твиттер Марсианской научной лаборатории

Атмосферное давление

См. также: Атмосфера Марса

Атмосфера Марса более разрежена, чем воздушная оболочка Земли, и более чем на 95 % состоит из углекислого газа, а содержание кислорода и воды составляет доли процента. Среднее давление атмосферы у поверхности составляет в среднем 0,6 кПа или 6 мбар, что в 160 меньше земного или равно земному на высоте почти 35 км от поверхности Земли). Атмосферное давление претерпевает сильные суточные и сезонные изменения.

Облачность и осадки

Иней на поверхности Марса (снимок аппарата «Викинг-2»)

Водяного пара в марсианской атмосфере не более тысячной доли процента, однако по результатам недавних (2013 г.) исследований, это всё же больше, чем предполагалось ранее, и больше, чем в верхних слоях атмосферы Земли, и при низком давлении и температуре он находится в состоянии, близком к насыщению, поэтому часто собирается в облака. Как правило, водяные облака формируются на высотах 10-30 км над поверхностью. Они сосредоточены в основном на экваторе и наблюдаются практически на протяжении всего года. Облака, наблюдаемые на высоких уровнях атмосферы (более 20 км), образуются в результате конденсации CO2. Этот же процесс ответствен за формирование низких (на высоте менее 10 км) облаков полярных областей в зимний период, когда температура атмосферы опускается ниже точки замерзания CO2 (-126 °С); летом же формируются аналогичные тонкие образования изо льда Н2О

Образования конденсационной природы представлены также туманами (или дымками). Они часто стоят над низинами — каньонами, долинами — и на дне кратеров в холодное время суток.

В атмосфере Марса могут возникать метели. Марсоход «Феникс» в 2008 году наблюдал в приполярных областях виргу — осадки под облаками, испаряющиеся не долетая до поверхности планеты. По первоначальным оценкам, скорость падения осадков в вирге была очень малой. Однако недавнее (2017 г.) моделирование марсианских атмосферных явлений показало, что на средних широтах, где происходит регулярная смена дня и ночи, после заката облака резко охлаждаются, и это может приводить к метелям, скорость частиц во время которых в действительности может достигать 10 м/с. Учёные допускают, что сильные ветра в совокупности с низкой облачностью (обычно марсианские облака формируются на высоте 10-20 км) могут привести к тому, что снег будет выпадать на поверхность Марса. Это явление подобно земным микропорывам — шквалам из нисходящего ветра со скоростью до 35 м/с, часто связанный с грозами.

Снег действительно наблюдался неоднократно. Так, зимой 1979 г. в районе посадки «Викинга-2» выпал тонкий слой снега, который пролежал несколько месяцев.

Пылевые бури и смерчи

Пыльные вихри, сфотографированные марсоходом «Оппортьюнити». Цифры в левом нижнем углу отображают время в секундах с момента первого кадра

Характерная особенность атмосферы Марса — постоянное присутствие пыли, частицы которой имеют размер порядка 1,5 мм и состоят в основном из оксида железа. Малая сила тяжести позволяет даже разреженным потокам воздуха поднимать огромные облака пыли на высоту до 50 км. А ветры, являющиеся одним из проявлений перепада температур, часто дуют над поверхностью планеты (особенно в конце весны — начале лета в южном полушарии, когда разница температур между полушариями особенно резкая), и их скорость доходит до 100 м/с. Таким образом формируются обширные пылевые бури, давно наблюдаемые в виде отдельных желтых облаков, а иногда в виде сплошной жёлтой пелены, охватывающей всю планету. Чаще всего пылевые бури возникают вблизи полярных шапок, их продолжительность может достигать 50—100 суток. Слабая жёлтая мгла в атмосфере, как правило, наблюдается после крупных пылевых бурь и без труда обнаруживается фотометрическими и поляриметрическими методами.

Пылевые бури, хорошо наблюдавшиеся на снимках, сделанных с орбитальных аппаратов, оказались слабозаметными при съемке с посадочных аппаратов. Прохождение пылевых бурь в местах посадок этих космических станций фиксировалось лишь по резкому изменению температуры, давления и очень слабому потемнению общего фона неба. Слой пыли, осевшей после бури в окрестностях мест посадок «Викингов», составил лишь несколько микрометров. Все это свидетельствует о довольно низкой несущей способности марсианской атмосферы.

С сентября 1971 по январь 1972 г. на Марсе происходила глобальная пылевая буря, которая даже помешала фотографированию поверхности с борта зонда «Маринер-9». Масса пыли в столбе атмосферы (при оптической толщине от 0,1 до 10), оцененная в этот период, составляла от 7,8⋅10-5 до 1,66⋅10-3г/см2. Таким образом, общий вес пылевых частиц в атмосфере Марса за период глобальных пылевых бурь может доходить до 108 — 109 т, что соизмеримо с общим количеством пыли в земной атмосфере.

Пылевые смерчи — ещё один пример процессов поднятия в воздух пыли, возникающий из-за суточных вариаций температур вблизи поверхности Марса. Из-за очень низкой плотности атмосферы красной планеты смерчи там больше похожи на торнадо, возвышающиеся на несколько километров в высоту и имеющие сотни метров в поперечнике. Они формируются настолько стремительно, что оказавшись внутри неё, гипотетический наблюдатель внезапно не в состоянии был бы видеть больше, чем несколько сантиметров перед собой. Ветер достигает 30 м/с. Пылевые смерчи на Марсе будут серьёзной проблемой для астронавтов, которым придется с ними столкнуться по прибытии на планету; дополнительной трудностью является то, что трение пыли в воздухе создает электричество. Из-за отсутствия эрозии на поверхности планеты на ней остаются следы этих явлений, и марсоходам удалось сфотографировать следы, оставленные ранее пылевыми дьяволами.

Вопрос о наличии воды

См. также: Гидросфера Марса Жидкая вода в чистом виде не может стабильно существовать на поверхности Марса при нынешних климатических условиях.

Для стабильного существования чистой воды в жидком состоянии температура и парциальное давление водяного пара в атмосфере должны быть выше тройной точки на фазовой диаграмме, тогда как сейчас они далеки от соответствующих значений. И действительно, исследования, проведённые космическим аппаратом «Маринер-4» в 1965 году, показали, что жидкой воды на Марсе в настоящее время нет, но данные марсоходов НАСА «Спирит» и «Оппортьюнити» свидетельствуют о наличии воды в прошлом. 31 июля 2008 года вода в состоянии льда была обнаружена на Марсе в месте посадки космического аппарата НАСА «Феникс». Аппарат обнаружил залежи льда непосредственно в грунте. Есть несколько фактов в поддержку утверждения о присутствии воды на поверхности планеты в прошлом. Во-первых, найдены минералы, которые могли образоваться только в результате длительного воздействия воды. Во-вторых, очень старые кратеры практически стёрты с лица Марса. Современная атмосфера не могла вызвать такого разрушения. Изучение скорости образования и эрозии кратеров позволило установить, что сильнее всего ветер и вода разрушали их около 3,5 млрд лет назад. Приблизительно такой же возраст имеют и многие промоины.

НАСА 28 сентября 2015 года объявило что на Марсе в настоящее время существуют сезонные потоки жидкой соленой воды. Эти образования проявляют себя в теплое время года и исчезают — в холодное. К своим выводам планетологи пришли, проанализировав высококачественные снимки, полученные научным инструментом High Resolution Imaging Science Experiment (HiRISE) орбитального марсианского аппарата Mars Reconnaissance Orbiter (MRO).

25 июля 2018 года вышел доклад об открытии, основанном на исследованиях радаром MARSIS. Работы показали наличие подлёдного озера на Марсе, расположенного на глубине 1,5 км подо льдом Южной полярной шапки (на Planum Australe), шириной около 20 км. Это стало первым известным постоянным водоёмом на Марсе.

Времена года

Как и на Земле, на Марсе происходит смена времен года из-за наклона оси вращения к плоскости орбиты, поэтому зимой в северном полушарии полярная шапка растет, а в южном почти исчезает, а через полгода полушария меняются местами. При этом из-за достаточно большого эксцентриситета орбиты планеты в перигелии (зимнее солнцестояние в северном полушарии) она получает до 40 % больше солнечного излучения, чем в афелии, и в северном полушарии зима короткая и относительно умеренная, а лето длинное, но прохладное, в южном же наоборот — лето короткое и относительно теплое, а зима длинная и холодная. В связи с этим южная шапка зимой разрастается до половины расстояния полюс-экватор, а северная — только до трети. Когда на одном из полюсов наступает лето, углекислый газ из соответствующей полярной шапки испаряется и поступает в атмосферу; ветры переносят его к противоположной шапке, где он снова замерзает. Таким образом происходит круговорот углекислого газа, который наряду с разными размерами полярных шапок вызывает изменение давления атмосферы Марса по мере его обращения вокруг Солнца. За счёт того, что зимой до 20—30 % всей атмосферы замерзает в полярной шапке, давление в соответствующей области соответственно падает.

Изменения со временем

Изменение угла наклона оси вращения Марса, эксцентриситета его орбиты и поступающего на его поверхность солнечного излучения за последние 10 млн лет.

Как и на Земле, климат Марса претерпевал долгосрочные изменения и на ранних этапах эволюции планеты сильно отличался от нынешнего. Различие состоит в том, что главную роль в циклических изменениях климата Земли играют изменение эксцентриситета орбиты и прецессия оси вращения, притом что наклон оси вращения остаётся примерно постоянным благодаря стабилизирующему воздействию Луны, тогда как Марс, не имея такого большого спутника, может претерпевать существенные изменения наклона оси его вращения. Расчёты показали, что наклон оси вращения Марса, составляющий сейчас 25° — примерно ту же величину, что и у Земли, — в недавнем прошлом был равен 45°, а в масштабе миллионов лет мог колебаться от 10° до 50°.

Марс в ледниковый период 2,1 млн — 400 тыс. лет назад, когда ось его вращения предположительно была сильно наклонена к плоскости орбиты. Полярные шапки разрастаются до низких широт порядка 30°.

Историю изменений климата на Марсе можно проследить путём анализа слоистых отложений в полярных шапках, на участках, где они доступны для наблюдения в разломах и трещинах. Полагая, что светлые слои образованы отложением льда, а тёмные — отложением пыли, по их числу и толщине (если знать время нарастания) можно судить о циклических вариациях климата и их корреляции с изменением угла наклона оси вращения и эксцентриситета орбиты Марса. Расчёты показывают, что циклы изменения этих параметров длятся всего 2,5 млн лет.

При сильном (порядка 45°) наклоне оси вращения планеты на полярные области попадает больше солнечного излучения, и они становятся самыми тёплыми участками. Вода и CO2 в полярных шапках из твёрдого состояния переходят в виде газа в атмосферу, становящуюся таким образом более плотной и потому более тёплой и влажной, а атмосферное давление увеличивается до значений, необходимых для существования воды на поверхности Марса в жидкой фазе. Запускается круговорот воды, подобный происходящему на Земле. Водяной пар из атмосферы конденсируется в лёд и снег в низких широтах, где теперь холодно, проникает в почву и замерзает там. Когда же наклон оси вращения уменьшается, в полярных областях снова становится холоднее, а в экваториальных — теплее; вода, замёрзшая в приповерхностных слоях, возвращается в атмосферу в виде пара, перемещается к полюсам и снова конденсируется в ледяные полярные шапки. Большая часть углекислого газа также возвращается в полярные шапки, тем самым делая атмосферу очень разреженной. Такие изменения происходят в масштабах сотен тысяч и даже миллионов лет. По результатам некоторых расчётов, за последние 5 миллионов лет водяной лёд переместился с полюсов к экватору и обратно более 40 раз.

Судя по обнаруженному в кратерах льду на довольно низких (порядка 40°) широтах, где температуры по идее слишком высоки для того, чтобы он был стабилен в течение долгого времени, последний ледниковый период ещё не завершился.

Измерения соотношений изотопов аргона, подтверждающие потерю значительной части атмосферы Марса.

Итак, климат раннего Марса сильно отличался от наблюдаемого сегодня. Присутствие жидкой воды, подтверждённое многочисленными свидетельствами, предполагает существование достаточно плотной атмосферы. Со временем бо́льшая её часть рассеялась — скорее всего, посредством нетермального механизма ионного распыления частицами солнечного ветра, происходящего из отсутствия у планеты магнитного поля. Это подтверждается измерениями соотношений изотопов аргона, проведёнными аппаратами «Викинг» в 1976 году, «Curiosity» в 2013 году и «MAVEN» в 2017 году, с этим согласуются и данные изучения марсианских метеоритов.

> См. также

  • MAVEN
  • Марсианская научная лаборатория
  • Колонизация Марса

Примечания

  1. Williams, David R. Mars Fact Sheet. National Space Science Data Center. NASA (September 1, 2004). Дата обращения 28 сентября 2017.
  2. Extreme Planet Takes Its Toll. Mars Exploration Rover Mission: Spotlight. Jet Propulsion Lab. June 12, 2007
  3. 1 2 3 4 5 6 7 8 Марс — красная звезда. Описание местности. Атмосфера и климат. galspace.ru — Проект «Исследование Солнечной системы». Дата обращения 29 сентября 2017.
  4. 1 2 3 4 5 Максим Заболоцкий. Общие сведения об атмосфере Марса. Spacegid.com (21.09.2013). Дата обращения 20 октября 2017.
  5. 1 2 3 4 Атмосфера Марса (недоступная ссылка). UNIVERSE-PLANET // ПОРТАЛ В ДРУГОЕ ИЗМЕРЕНИЕ. Дата обращения 29 сентября 2017. Архивировано 1 октября 2017 года.
  6. Centro de Astrobiología Архивировано 25 октября 2015 года.
  7. Погодный твиттер Марсианской научной лаборатории
  8. 1 2 3 Mars Pathfinder — Science Results — Atmospheric and Meteorological Properties. nasa.gov. Дата обращения 20 апреля 2017.
  9. В атмосфере Марса много водяного пара, infuture.ru (13 июня 2013). Дата обращения 30 сентября 2017.
  10. 1 2 3 4 5 6 Кузьмин Р. О., Галкин И. Н. Атмосфера Марса // Как устроен Марс. — Москва: Знание, 1989. — Т. 8. — 64 с. — (Космонавтика, астрономия). — 26 953 экз. — ISBN 5-07000280-5.
  11. Nancy Atkinson. SNOW IS FALLING FROM MARTIAN CLOUDS, Universe Today (29 Sep 2008). Дата обращения 30 августа 2017.
  12. Aymeric Spiga, David P. Hinson, Jean-Baptiste Madeleine, Thomas Navarro, Ehouarn Millour, François Forget & Franck Montmessin. Snow precipitation on Mars driven by cloud-induced night-time convection : // Nature Geoscience. — 2017. — DOI:10.1038/ngeo3008.
  13. Королёв, Владимир. На Марсе предсказали снежные метели с микропорывами, N+1 (23 Авг 2017). Дата обращения 30 августа 2017.
  14. M. T. Lemmon et. al. Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity : // Science. — 2004. — Т. 306, вып. 5702 (3 December). — С. 1753—1756. — DOI:10.1126/science.1104474.
  15. 1 2 N. Mangold, D. Baratoux, O. Witasse, T. Encrenaz, C. Sotin. Mars: a small terrestrial planet : // The Astronomy and Astrophysics Review. — 2016. — Т. 24, № 1 (16 December). — С. 15. — DOI:10.1007/s00159-016-0099-5.
  16. CNN, Ashley Strickland,. Evidence detected of lake beneath Mars’ surface, CNN. Дата обращения 28 июля 2018.
  17. Jihad Touma, Jack Wisdom. The Chaotic Obliquity of Mars : // Science. — 1993. — Т. 259, № 5099 (26 February). — С. 1294—1297. — Bibcode: 1993Sci…259.1294T. — DOI:10.1126/science.259.5099.1294. — PMID 17732249.
  18. Laskar, Jacques; Levrard, Benjamin; Mustard, John F. Orbital forcing of the martian polar layered deposits : // Nature. — 2002. — Т. 419, № 6905 (26 September). — С. 375—377. — DOI:10.1038/nature01066.
  19. 1 2 Ice Ages (англ.). Mars Education at Arizona State University. Дата обращения 23 июля 2017.
  20. Марс раскачался: 40 ледниковых периодов за 5 млн. лет (англ.). Популярная механика (18.09.2007). Дата обращения 23 июля 2017.
  21. Composition of the Atmosphere at the Surface of Mars: Detection of Argon-36 and Preliminary Analysis. Owen T. Biemann K. : // Science. — 1976. — Т. 193, вып. 4255. — С. 801–803. — DOI:10.1126/science.193.4255.801.
  22. Sushil K. Atreya, Melissa G. Trainer, Heather B. Franz, Michael H. Wong, Heidi L. K. Manning, Charles A. Malespin, Paul R. Mahaffy, Pamela G. Conrad, Anna E. Brunner, Laurie A. Leshin, John H. Jones, Christopher R. Webster, Tobias C. Owen, Robert O. Pepin, R. Navarro-González. Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss : // Geophysical Research Letters. — 2013. — Т. 40, вып. 21 (6 November). — С. 5605–5609. — DOI:10.1002/2013GL057763.
  23. Wall, Mike. Most of Mars’ Atmosphere Is Lost in Space, Space.com (April 8, 2013). Дата обращения 29 июля 2017.
  24. B. M. Jakosky, M. Slipski, M. Benna, P. Mahaffy, M. Elrod, R. Yelle, S. Stone, N. Alsaeed. Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar : // Science. — 2017. — Т. 355, вып. 6332 (31 March). — С. 1408—1410. — DOI:10.1126/science.aai7721.
  25. Bogard DD, Clayton RN, Marti K, Owen T., Turner G. Martian volatiles: Isotopic composition origin, and evolution // Space Science Reviews. — 2001. — Т. 96, вып. 1—4 (апрель). — С. 425–458. — DOI:10.1023/A:1011974028370 DO.

Ссылки

  • Лекция «Удивительный Марс» 23.01.2013, лектор Сурдин В. Г. (видео, лекция в Московском планетарии)

Характеристики: Атмосфера Марса более разряжена, чем воздушная оболочка Земли. По составу она напоминает атмосферу Венеры и на 95% состоит из углекислого газа. Около 4% приходится на долю азота и аргона. Кислорода и водяного пара в марсианской атмосфере меньше 1% (Точный состав см ). Среднее давление атмосферы на уровне поверхности около 6,1 мбар. Это в 15000 раз меньше, чем на Венере, и в 160 раз меньше, чем у поверхности Земли. В самых глубоких впадинах давление достигает 10 мбар.
Средняя температура на Марсе значительно ниже чем на Земле, — около -40° С. При наиболее благоприятных условиях летом на дневной половине планеты воздух прогревается до 20° С — вполне приемлемая температура для жителей Земли. Но зимней ночью мороз может достигать до -125° С. При зимней температуре даже углекислота замерзает, превращаясь в сухой лед. Такие резкие перепады температуры вызваны тем, что разреженная атмосфера Марса не способна долго удерживать тепло. Первые измерения температуры Марса с помощью термометра, помещённого в фокусе телескопа-рефлектора, проводились ещё в начале 20-х годов. Измерения В. Лампланда в 1922 г. дали среднюю температуру поверхности Марса -28°С, Э. Петтит и С. Никольсон получили в 1924 г. -13°С. Более низкое значение получили в 1960г. У. Синтон и Дж. Стронг: -43°С. Позднее, в 50-е и 60-е гг. были накоплены и обобщены многочисленные измерения температур в различных точках поверхности Марса, в разные сезоны и времена суток. Из этих измерений следовало, что днём на экваторе температура может доходить до +27°С, но уже к утру до -50°С.

Марс Одиссей — Глобальная пылевая буря

На Марсе существуют и температурные оазисы, в районах «озера» Феникс (плато Солнца) и земли Ноя перепад температур составляет от -53° С до +22° С летом и от -103° С до -43° С зимой. Итак, Марс — весьма холодный мир, однако климат там ненамного суровее, чем в Антарктиде. Когда первые фотографии с поверхности Марса, сделанные “Викингом”, были переданы на Землю, ученые были очень сильно удивлены, увидев, что Марсианское небо не черное, как это предполагалось, а розовое. Оказалось что пыль, висящая в воздухе, поглощает 40% поступающего солнечного цвета, создавая цветной эффект.
Пылевые бури: Одним из проявлений перепада температур являются ветры. Над поверхностью планеты часто дуют сильные ветры, скорость которых доходит до 100 м/с. Малая сила тяжести позволяет даже разреженным потокам воздуха поднимать огромные облака пыли. Иногда довольно обширные области на Марсе бывают охвачены грандиозными пылевыми бурями. Чаще всего они возникают вблизи полярных шапок. Глобальная пылевая буря на Марсе помешала фотографированию поверхности с борта зонда «Маринер-9». Она бушевала с сентября 1971 по январь 1972 г., подняв в атмосферу на высоте более 10 км около миллиарда тонн пыли. Пылевые бури чаще всего бывают в периоды великих противостояний, когда лето в южном полушарии совпадает с прохождением Марса через перигелий. Продолжительность бурь может достигать 50-100 суток. (Раньше меняющийся цвет поверхности объяснялся ростом марсианских растений).
Пылевые дьяволы: Пылевые смерчи — еще один пример процессов на Марсе, связанных с температурой. Такие смерчи очень частые проявления на Марсе. Они поднимают в атмосферу пыль и возникают из-за разниц температур. Причина: днем поверхность Марса достаточно нагревается (иногда и до положительных температур), но на высоте до 2х метров от поверхности атмосфера остается такой же холодной. Такой перепад вызывает нестабильность, поднимая в воздух пыль — образуются пылевые дьяволы.
Водяной пар: Водяного пара в марсианской атмосфере совсем немного, но при низких давлении и температуре он находится в состоянии, близком к насыщению, и часто собирается в облака. Марсианские облака довольно невыразительны по сравнению с земными. В телескоп видны только самые большие из них, но наблюдения с космических кораблей показали, что на Марсе встречаются облака самых разнообразных форм и видов: перистые, волнистые, подветренные (вблизи крупных гор и под склонами больших кратеров, в местах, защищенных от ветра). Над низинами — каньонами, долинами — и на дне кратеров в холодное время суток часто стоят туманы. Зимой 1979 г. в районе посадки «Викинга-2» выпал тонкий слой снега, который пролежал несколько месяцев.
Времена года: На сегодняшний момент известно, что из всех планет Солнечной системы Марс наиболее подобен Земле. Он сформировался приблизительно 4,5 млрд. лет назад. Ось вращения Марса наклонена к его орбитальной плоскости приблизительно на 23,9°, что сравнимо с наклоном земной оси, составляющим 23,4°, а потому там, как и на Земле, происходит смена сезонов. Ярче всего сезонные изменения проявляются в полярных областях. В зимнее время полярные шапки занимают значительную площадь. Граница северной полярной шапки может удалиться от полюса на треть расстояния до экватора, а граница южной шапки преодолевает половину этого расстояния. Такая разница вызвана тем, что в северном полушарии зима наступает, когда Марс проходит через перигелий своей орбиты, а в южном — когда через афелий. Из-за этого зима в южном полушарии холоднее, чем в северном. И продолжительность каждого из четырех марсианских сезонов разнится в зависимости от его удаления от Солнца. А потому в марсианском северном полушарии зима коротка и относительно «умеренна», а лето длинное, но прохладное. В южном же наоборот — лето короткое и относительно теплое, а зима длинная и холодная.
С наступлением весны полярная шапка начинает «съеживаться», оставляя за собой постепенно исчезающие островки льда. В то же время от полюсов к экватору распространяется так называемая волна потемнения. Современные теории объясняют ее тем, что весенние ветры переносят вдоль меридианов большие массы грунта с различными отражательными свойствами.

Где марсианская вода?

По-видимому, ни одна из шапок не исчезает полностью. До начала исследований Марса при помощи межпланетных зондов предполагалось, что его полярные области покрыты застывшей водой. Более точные современные наземные и космические измерения обнаружили в составе марсианского льда также замерзший углекислый газ. Летом он испаряется и поступает в атмосферу. Ветры переносят его к противоположной полярной шапке, где он снова замерзает. Этим круговоротом углекислого газа и разными размерами полярных шапок объясняется непостоянство давления марсианской атмосферы.

Марсианский день, называемый сол, составляет 24,6 часа, а его год — 669 сол.
Влияние климата: Первые попытки разыскать в марсианской почве прямые свидетельства наличия основы для жизни — жидкой воды и таких элементов, как азот и сера, не принесли успеха. Экзобиологический эксперимент, проведенный на Марсе в 1976 году после посадки на его поверхность американской межпланетной станции «Викинг», несшей на своем борту автоматическую биологическую лабораторию (АБЛ), не принес доказательств существования жизни. Отсутствие органических молекул на изученной поверхности могло быть вызвано интенсивным ультрафиолетовым излучением Солнца, так как у Марса нет защитного озонового слоя, и окисляющим составом почвы. Поэтому верхний слой марсианской поверхности (толщиной около нескольких сантиметров) — бесплоден, хотя существует предположение, что в более глубоких, подповерхностных, слоях сохранились условия, которые были миллиарды лет назад. Определенным подтверждением этих предположений стали недавно обнаруженные на Земле на глубине 200 м микроорганизмы — метаногены, питающиеся водородом и дышащие углекислым газом. Специально же проведенный учеными эксперимент доказал, что подобные микроорганизмы могли бы выжить и в суровых марсианских условиях. Гипотеза о более теплом древнем Марсе с открытыми водоемами — реками, озерами, а может, и морями, а также с более плотной атмосферой — обсуждается уже более двух десятилетий, так как «обживать» столь негостеприимную планету, да еще при отсутствии воды, было бы очень сложно. Для того чтобы на Марсе могла существовать жидкая вода, его атмосфера должна была бы очень сильно отличаться от нынешней.

Переменчивый марсианский климат

Современный Марс — очень негостеприимный мир. Разреженная атмосфера, к тому же непригодная для дыхания, страшные пылевые бури, отсутствие воды и резкие перепады температуры в течение суток и года — всё это свидетельствует о том, что заселить Марс будет не так-то просто. Но ведь когда-то на нём текли реки. Значит ли это, что в прошлом на Марсе был другой климат?
Есть несколько фактов в поддержку этого утверждения. Вопервых, очень старые кратеры практически стёрты с лица Марса. Современная атмосфера не могла вызвать такого разрушения. Во-вторых, существуют многочисленные следы проточной воды, что также невозможно при нынешнем состоянии атмосферы. Изучение скорости образования и эрозии кратеров позволило установить, что сильнее всего ветер и вода разрушали их около 3,5 млрд пет назад. Приблизительно такой же возраст имеют и многие промоины.
К сожалению, сейчас не удаётся объяснить, что именно привело к таким серьёзным изменениям климата. Ведь для того чтобы на Марсе могла существовать жидкая вода, его атмосфера должна была очень сильно отличаться от нынешней. Возможно, причина этого кроется в обильном выделении летучих элементов из недр планеты в первый миллиард лет её жизни или в изменении характера движения Марса. Из-за большого эксцентриситета и близости к планетам — гигантам орбита Марса, а также наклон оси вращения планеты могут испытывать сильные колебания, как короткопериодические, так и достаточно длительные. Эти изменения вызывают уменьшение или увеличение количества солнечной энергии, поглощаемой поверхностью Марса. В прошлом климат мог испытать сильное потепление, вследствие которого плотность атмосферы повысилась за счёт испарения полярных шапок и таяния подземных льдов.
Предположения о переменчивости марсианского климата подтверждаются недавними наблюдениями на Хаббловском космическом телескопе. Он позволил производить с околоземной орбиты очень точные измерения характеристик атмосферы Марса и даже предсказывать марсианскую погоду. Результаты оказались довольно неожиданными. Климат планеты сильно изменился со времени посадок спускаемых аппаратов «Викинг» (1976 г.): он стал суше и холоднее. Возможно, это связано с сильными бурями, которые в начале 70-х гг. подняли в атмосферу огромное количество мельчайших пылинок. Эта пыль препятствовала остыванию Марса и испарению водяного пара в космическое пространство, но потом осела, и планета вернулась к своему обычному состоянию.

Температура на марсе

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *