Хромосома

Содержание

Хромосомы: строение, функции. Число хромосом

Раздел ЕГЭ: 2.7. Клетка — генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Соматические и половые клетки. Жизненный цикл клетки: интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. Развитие половых клеток у растений и животных. Деление клетки — основа роста, развития и размножения организмов. Роль мейоза и митоза

Клетка — генетическая единица живого

Клетка — структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов и вироидов — форм жизни, не имеющих клеточного строения). Обладает собственным обменом веществ, способна к самовоспроизведению.

Содержимое клетки отделено от окружающей среды плазматической мембраной. Внутри клетка заполнена цитоплазмой, в которой расположены различные органеллы и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждая из органелл клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Молекула ДНК хранит биологическую информацию в виде генетического кода, состоящего из последовательности нуклеотидов. ДНК содержит информацию о структуре различных видов РНК и белков.

Хромосомы— нуклеопротеидные структуры клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митоза или мейоза. Набор всех хромосом клетки, называемый кариотипом.

Хромосома образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит группу множества генов. Комплекс белков, связанных с ДНК, образует хроматин. Хроматин — нуклеопротеид, составляющий основу хромосом, находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК.

Строение хромосомы лучше всего видно в метафазе митоза. Она представляет собой палочковидную структуру и состоит из двух сестринских хроматид, удерживаемых центромерой в области первичной перетяжки.

Под микроскопом видно, что хромосомы имеют поперечные полосы, которые чередуются в различных хромосомах по-разному. Распознают пары хромосом, учитывая распределение светлых и темных полос (чередование АТ и ГЦ — пар). Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например, у человека и шимпанзе, сходный характер чередования полос в хромосомах.

Генов, кодирующих различные признаки, у любого организма очень много. Так, по приблизительным подсчетам, у человека около 120 тыс. генов, а видов хромосом всего 23. Все это огромное количество генов размещается в этих хромосомах.

Число хромосом и их видовое постоянство

Каждый вид растений и животных в норме имеет строго определенное и постоянное число хромосом, которые могут различаться по размерам и форме. Поэтому можно сказать, что число хромосом и их морфологические особенности являются характерным признаком для данного вида. Эта особенность известна как видовое постоянство числа хромосом.

Число хромосом в одной клетке у разных видов: горилла – 48, макака – 42, кошка – 38, собака – 78, корова – 120, ёж -96, горох – 14, береза – 84, лук – 16, пшеница – 42. Наименьшее число у муравья – 2, наибольшее у одного из видов папоротника – 1260 хромосом на клетку.

В кариотипе человека 46 хромосом — 22 пары аутосом и одна пара половых хромосом. Мужчины гетерогаметны (половые хромосомы XY), а женщины гомогаметны (половые хромосомы XX). Y-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей. Например, в Y-хромосоме нет аллеля свертываемости крови. В результате гемофилией болеют, как правило, только мальчики.

Хромосомы одной пары называются гомологичными. Гомологичные хромосомы в одинаковых локусах (местах расположения) несут аллельные гены (гены, отвечающие за один признак).

Хромосомная теория наследственности создана выдающимся американским генетиком Томасом Морганом (1866—1945):

  1. ген представляет собой участок хромосомы. Хромосомы, таким образом, представляют собой группы сцепления генов.
  2. аллельные гены расположены в строго определенных местах (локусах) гомологических хромосом.
  3. гены располагаются в хромосомах линейно, т. е. друг за другом.
  4. в процессе образования гамет между гомологичными хромосомами происходит конъюгация, в результате которой они могут обмениваться аллельными генами, т.е. может происходить кроссинговер. Гены одной хромосомы не наследуются сцепленно.

Явление кроссинговера помогло ученым установить расположение каждого гена в хромосоме, создать генетические карты хромосом (хромосомные карты). Вероятность расхождения двух генов по разным хромосомам в процессе кроссинговера зависит от расстояния между ними в хромосоме.

К настоящему времени при помощи подсчета кроссинговеров и других, более современных методов построены генетические карты хромосом многих видов живых существ; гороха, томата, дрозофилы, мыши. Кроме того, успешно продолжается работа по составлению генетических карт хромосом человека, что может помочь в борьбе с различными неизлечимыми пока болезнями.

Хромосомы — самовоспроизводящиеся структуры клеточного ядра. Как у прокариотических, так и у эукариотических организмов гены располагаются группами на отдельных молекулах ДНК, которые при участии белков и других макромолекул клеток организуются в хромосомы. Зрелые клетки зародышевой линии (гаметы — яйцеклетки, спермии) многоклеточных организмов содержат по одному (гаплоидному) набору хромосом организма.

После того как к полюсам отойдут полные наборы хроматид, их называют хромосомами. Хромосомы — это структуры в ядре клеток эукариот, которые пространственно и функционально организовывают ДНК в геноме индивидуумов.

Химический состав хромосом. Хромосома представляет собой дезоксирибонуклеопротеид (ДНП), то есть комплекс, образованный из одной непрерывной двухцепочечной молекулы ДНК и белков (гистонов и негистонов). В состав хромосом входят также липиды и минеральные вещества (например, ионы Ca2+, Mg2+).

Каждая хромосома – сложное надмолекулярное образование, сформированное в результате компактизации хроматина.

Строение хромосом. В большинстве случаев хромосомы хорошо видны лишь в делящихся клетках начиная со стадии метафазы, когда их можно видеть даже в световой микроскоп. В этот период удается определить количество хромосом в ядре, их размеры, форму и строение. Именно такие хромосомы называют метафазными. Интерфазные хромосомы часто называют просто хроматином.

Число хромосом обычно постоянно для всех клеток особи любого вида растений, животных и человека. Но у разных видов количество хромосом неодинаково (от двух до нескольких сотен). Наименьшее число хромосом имеет лошадиная аскарида, наибольшее встречается у простейших и папоротников, для которых характерны высокие уровни полиплоидии. Обычно диплоидные наборы содержат от одного до нескольких десятков хромосом.

Количество хромосом в ядре не связано с уровнем эволюционного развития живых организмов. У многих примитивных форм оно велико, например, в ядрах некоторых видов простейших содержатся сотни хромосом, тогда как у шимпанзе их всего только 48.

Каждая хромосома, образованная одной молекулой ДНК, представляет собой удлиненную палочковидную структуру – хроматиду, имеющую два «плеча», разделенных первичной перетяжкой, или центромерой. Метафазная хромосома состоит из двух соединенных центромерой сестринских хроматид, каждая из которых содержит одну молекулу ДНК, уложенную в виде спирали.

Центромера – это небольшое фибриллярное тельце, осуществляющее первичную перетяжку хромосомы. Она является важнейшей частью хромосомы, так как определяет ее движение. Центромеру, к которой прикрепляются нити веретена во время деления (при митозе и мейозе), называют кинетохором (от греч. kinetos – подвижный и choros – место). Он контролирует движение расходящихся хромосом при делении клетки. Хромосома, лишенная центромеры, не способна совершать упорядоченное движение и может потеряться.

Обычно центромера хромосомы занимает определенное место, и это является одним из видовых признаков, по которому различают хромосомы. Изменение положения центромеры в той или иной хромосоме служит показателем хромосомных перестроек. Плечи хромосом оканчиваются участками, не способными соединяться с другими хромосомами или их фрагментами. Эти концевые участки хромосом называют теломерами. Теломеры предохраняют концы хромосом от слипания и тем самым обеспечивают сохранение их целостности. За открытие механизма защиты хромосом теломерами и ферментом теломеразой американские ученые Э. Блекберн, К. Грейдер и Д. Шостак в 2009 году были удостоены Нобелевской премии в области медицины и физиологии. Концы хромосом нередко обогащены гетерохроматином.

В зависимости от расположения центромеры определяют три основных вида хромосом: равноплечие (плечи равной длины), неравноплечие (с плечами разной длины) и палочковидные (с одним, очень длинным и другим, очень коротким, едва заметным плечом). Некоторые хромосомы имеют не только одну центромеру, но еще и вторичную перетяжку, не связанную с прикреплением нити веретена при делении. Этот участок – ядрышковый организатор, выполняющий функцию синтеза ядрышка в ядре.

Репликация хромосом

Важным свойством хромосом является их способность к удвоению (самовоспроизведению). Обычно удвоение хромосом предшествует делению клетки. В основе удвоения хромосом лежит процесс репликации (от лат. replicatio – повторение) макромолекул ДНК, обеспечивающий точное копирование генетической информации и передачу ее от поколения к поколению. Удвоение хромосом – это сложный процесс, включающий в себя не только репликацию гигантских молекул ДНК, но также синтез связанных с ДНК хромосомных белков. Конечным этапом является упаковка ДНК и белков в особые комплексы, образующие хромосому. В результате репликации вместо одной материнской хромосомы появляются две идентичные ей дочерние хромосомы.

Функция хромосом заключается:

  • в хранении наследственной информации. Хромосомы являются носителями генетической информации;
  • передаче наследственной информации. Наследственная информация передается путем репликации молекулы ДНК;
  • реализации наследственной информации. Благодаря воспроизводству того или иного типа и-РНК и, соответственно, того или иного типа белка осуществляется контроль над всеми процессами жизнедеятельности клетки и всего организма.

Таким образом, хромосомы с заключенными в них генами обусловливают непрерывный ряд воспроизведения.

Хромосомы осуществляют сложную координацию и регуляцию процессов в клетке вследствие заключенной в них генетической информации, обеспечивающей синтез первичной структуры белков-ферментов.

У каждого вида в клетках находится определенное количество хромосом. Они являются носителями генов, определяющих наследственные свойства клеток и организмов вида. Ген – это участок молекулы ДНК хромосомы, на котором синтезируются различные молекулы РНК (трансляторы генетической информации).

В соматических, то есть телесных, клетках обычно содержится двойной, или диплоидный, набор хромосом. Он состоит из пар (2n) практически одинаковых по форме и размеру хромосом. Такие парные, похожие друг на друга хромосомные наборы называют гомологичными (от греч. homos – равный, одинаковый, общий). Они происходят от двух организмов; один набор от материнского, а другой – от отцовского. В таком парном наборе хромосом заключена вся генетическая информация клетки и организма (особи). Гомологичные хромосомы одинаковы по форме, длине, строению, расположению центромеры и несут одни и те же гены, имеющие одинаковую локализацию. Они содержат одинаковый набор генов, хотя и могут различаться их аллелями. Таким образом, гомологичные хромосомы содержат очень близкую, но не идентичную наследственную информацию.

Совокупность признаков хромосом (их число, размеры, форма и детали микроскопического строения) в клетках тела организма того или иного вида называют кариотипом. Форма хромосом, их число, размеры, расположение центромеры, наличие вторичных перетяжек всегда специфичны для каждого вида, по ним можно сопоставлять родство организмов и устанавливать их принадлежность к тому или иному виду.

Постоянство кариотипа, свойственное каждому виду, выработалось в процессе его эволюции и обусловлено закономерностями митоза и мейоза. Однако в процессе существования вида в его кариотипе вследствие мутаций могут произойти изменения хромосом. Некоторые мутации существенно изменяют наследственные качества клетки и организма в целом.

Постоянные характеристики хромосомного набора – количество и морфологические особенности хромосом, определяемые главным образом расположением центромер, наличием вторичных перетяжек, чередованием эухроматиновых и гетерохроматиновых участков и пр., позволяют идентифицировать виды. Поэтому кариотип называют «паспортом» вида.

Хромосома

Запрос «Бактериальные хромосомы» перенаправляется сюда. На эту тему нужно создать отдельную статью (см. иноязычные аналоги). Митотические хромосомы человека, окраска DAPI Хромосомы саранчи в мейозе Разные стадии деления клеток эпителия саламандры. Рисунок из книги В. Флемминга Zellsubstanz, Kern und Zelltheilung (1882)

Хромосо́мы (др.-греч. χρῶμα «цвет» + σῶμα «тело») — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Набор всех хромосом клетки, называемый кариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости.

Хромосома эукариот образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит линейную группу множества генов. Необходимыми функциональными элементами хромосомы эукариот являются центромера, теломеры и точки инициации репликации. Точки начала репликации (сайты инициации) и теломеры, находящиеся на концах хромосом, позволяют молекуле ДНК эффективно реплицироваться, тогда как в центромерах сестринские молекулы ДНК прикрепляются к митотическому веретену деления, что обеспечивает их точное расхождение по дочерним клеткам в митозе.

Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных или вирусных хромосомах. Поэтому, по мнению Д. Е. Корякова и И. Ф. Жимулёва, более широким определением является определение хромосомы как структуры, которая содержит нуклеиновую кислоту и функция которой состоит в хранении, реализации и передаче наследственной информации. Хромосомы эукариот — это ДНК-содержащие структуры в ядре, митохондриях и пластидах. Хромосомы прокариот — это ДНК-содержащие структуры в клетке без ядра. Хромосомы вирусов — это молекула ДНК или РНК в составе капсида.

История открытия хромосом

Первые описания хромосом появились в статьях и книгах разных авторов в 70-х годах XIX века, и приоритет открытия хромосом отдают разным людям, а именно: И. Д. Чистякову (1873), А. Шнейдеру (1873), Э. Страсбургеру (1875), О. Бючли (1876) и другим. Чаще всего годом открытия хромосом называют 1882 год, а их первооткрывателем — немецкого анатома В. Флеминга, который в своей фундаментальной книге «Zellsubstanz, Kern und Zelltheilung» собрал и упорядочил сведения о хромосомах, дополнив результатами собственных исследований. Термин «хромосома» был предложен немецким гистологом Г. Вальдейером в 1888 году. «Хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами.

После переоткрытия в 1900 году законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы при мейозе и оплодотворении ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902 году Т. Бовери и в 1902—1903 годах У. Сеттон (Walter Sutton) независимо друг от друга выдвинули гипотезу о генетической роли хромосом.

Экспериментальное подтверждение этих идей было осуществлено в первой четверти XX века американскими учёными Т. Морганом, К. Бриджесом, А. Стёртевантом и Г. Мёллером. Объектом их генетических исследований послужила плодовая мушка D.melanogaster. На основе данных, полученных на дрозофиле, они сформулировали «хромосомную теорию наследственности», согласно которой передача наследственной информации связана с хромосомами, в которых линейно, в определённой последовательности, локализованы гены. Основные положения хромосомной теории наследственности были опубликованы в 1915 году в книге «The mechanism of mendelian heredity» (англ.).

В 1933 году за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине.

Морфология метафазных хромосом

Схема строения хромосомы в метафазе митоза. 1 — хроматида; 2 — центромера; 3 — короткое плечо; 4 — длинное плечо.Хромосомные территории в интерфазном ядре фибробласта человека

В ходе клеточного цикла облик хромосомы меняется. В интерфазе это очень нежные структуры, занимающие в ядре отдельные хромосомные территории, но не заметные как обособленные образования при визуальном наблюдении. В митозе хромосомы преобразуются в плотно упакованные элементы, способные сопротивляться внешним воздействиям, сохранять свою целостность и форму. Именно хромосомы на стадии профазы, метафазы или анафазы митоза доступны для наблюдения с помощью светового микроскопа. Митотические хромосомы можно увидеть у любого организма, клетки которого способны делиться митозом, исключение составляют дрожжи S.cerevisiae, чьи хромосомы слишком малы. Обычно митотические хромосомы имеют размеры в несколько микрон. Например, самая большая хромосома человека, 1-я хромосома имеет длину около 7—8 мкм в метафазе и 10 мкм в профазе митоза.

Клетки HeLa в интерфазе и на последовательных стадиях митоза

На стадии метафазы митоза хромосомы состоят из двух продольных копий, которые называются сестринскими хроматидами и которые образуются при репликации. У метафазных хромосом сестринские хроматиды соединены в районе первичной перетяжки, называемой центромерой. Центромера отвечает за расхождение сестринских хроматид в дочерние клетки при делении. На центромере происходит сборка кинетохора — сложной белковой структуры, определяющей прикрепление хромосомы к микротрубочкам веретена деления — движителям хромосомы в митозе. Центромера делит хромосомы на две части, называемые плечами. У большинства видов короткое плечо хромосомы обозначают буквой p, длинное плечо — буквой q. Длина хромосомы и положение центромеры являются основными морфологическими признаками метафазных хромосом.

В зависимости от расположения центромеры различают три типа строения хромосом:

  • акроцентрические хромосомы, у которых центромера находится практически на конце, и второе плечо настолько мало, что его может быть не видно на цитологических препаратах;
  • субметацентрические хромосомы с плечами неравной длины;
  • метацентрические хромосомы, у которых центромера расположена посередине или почти посередине.

Эту классификацию хромосом на основе соотношения длин плеч предложил в 1912 году российский ботаник и цитолог С. Г. Навашин. Помимо вышеуказанных трёх типов С. Г. Навашин выделял ещё и телоцентрические хромосомы, то есть хромосомы только с одним плечом. Однако по современным представлениям истинно телоцентрических хромосом не бывает. Второе плечо, пусть даже очень короткое и невидимое в обычный микроскоп, всегда присутствует.

Дополнительным морфологическим признаком некоторых хромосом является так называемая вторичная перетяжка, которая внешне отличается от первичной отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают различной длины и могут располагаться в различных точках по длине хромосомы. Во вторичных перетяжках находятся, как правило, ядрышковые организаторы, содержащие многократные повторы генов, кодирующих рибосомные РНК. У человека вторичные перетяжки, содержащие рибосомные гены, находятся в коротких плечах акроцентрических хромосом, они отделяют от основного тела хромосомы небольшие хромосомные сегменты, называемые спутниками. Хромосомы, обладающие спутником, принято называть SAT-хромосомами (лат. SAT (Sine Acid Thymonucleinico) — без ДНК).

Дифференциальная окраска метафазных хромосом

Дифференциальная GTG-окраска хромосом человека

При монохромном окрашивании хромосом (ацето-кармином, ацето-орсеином, окрашиванием по Фёльгену или Романовскому-Гимзе) можно идентифицировать число и размеры хромосом; их форму, определяемую прежде всего положением центромер, наличием вторичных перетяжек, спутников. В подавляющем числе случаев для идентификации индивидуальных хромосом в хромосомном наборе этих признаков недостаточно. Кроме того, монохромно окрашенные хромосомы часто очень похожи у представителей разных видов. Дифференциальное окрашивание хромосом, различные методики которого были разработаны в начале 70-х годов XX века, снабдило цитогенетиков мощнейшим инструментом для идентификации как индивидуальных хромосом в целом, так и их частей, облегчив тем самым процедуру анализа генома.

Методы дифференциального окрашивания делятся на две основные группы:

  • методы селективного окрашивания определённых хромосомных районов, таких как блоки конститутивного гетерохроматина, активные ядрышкобразующие районы, центромерные и теломерные районы;
  • методы дифференциального окрашивания эухроматиновых районов хромосом, обеспечивающие выявление в эухроматиновых районах чередующихся сегментов, так называемых бэндов (англ. band — полоса, лента, тесьма), которые окрашиваются с различной интенсивностью.

Уровни компактизации хромосомной ДНК

См. также: Сверхспирализация ДНК

Основу хромосомы составляет линейная макромолекула ДНК значительной длины. В молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований. Суммарная длина ДНК из одной клетки человека составляет величину порядка двух метров. При этом типичное ядро клетки человека, которое можно увидеть только при помощи микроскопа, занимает объём около 110 мкм³, а митотическая хромосома человека в среднем не превышает 5—6 мкм. Подобная компактизация генетического материала возможна благодаря наличию у эукариот высокоорганизованной системы укладки молекул ДНК как в интерфазном ядре, так и в митотической хромосоме. Надо отметить, что у эукариот в пролиферирующих клетках осуществляется постоянное закономерное изменение степени компактизации хромосом. Перед митозом хромосомная ДНК компактизуется в 105 раз по сравнению с линейной длиной ДНК, что необходимо для успешной сегрегации хромосом в дочерние клетки, в то время как в интерфазном ядре для успешного протекания процессов транскрипции и репликации хромосоме необходимо декомпактизоваться. При этом ДНК в ядре никогда не бывает полностью вытянутой и всегда в той или иной степени упакована. Так, расчётное уменьшение размера между хромосомой в интерфазе и хромосомой в митозе составляет всего примерно 2 раза у дрожжей и 4—50 раз у человека.

Упаковка ДНК в хроматин обеспечивает многократное сокращение линейных размеров ДНК, необходимое для размещения её в ядре. Она происходит в несколько этапов. Наиболее изученными являются три первых уровня упаковки: (1) накручивание ДНК на нуклеосомы с образованием нуклеосомной нити диаметром 10 нм, (2) компактизация нуклеосомной нити с образованием так называемой 30-нм фибриллы и (3) сворачивание последней в гигантские (50 — 200 тысяч п. н.) петли, закреплённые на белковой скелетной структуре ядра — ядерном матриксе.

Одним из самых последних уровней упаковки в митотическую хромосому некоторые исследователи считают уровень так называемой хромонемы, толщина которой составляет около 0,1—0,3 мкм. В результате дальнейшей компактизации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп. Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, соединены между собой в районе центромеры (подробнее о судьбе хромосом при клеточном делении см. статьи митоз и мейоз).

Хромосомные аномалии

Анеуплоидия

Основная статья: Анеуплоидия

При анеуплоидии происходит изменение числа хромосом в кариотипе, при котором общее число хромосом не кратно гаплоидному хромосомному набору n. В случае утраты одной хромосомы из пары гомологичных хромосом мутантов называют моносомиками, в случае одной дополнительной хромосомы мутантов с тремя гомологичными хромосомами называют трисомиками, в случае утраты одной пары гомологов — нуллисомиками. Анеуплоидия по аутосомным хромосомам всегда вызывает значительные нарушения развития, являясь основной причиной спонтанных абортов у человека. Одной из самых известных анеуплоидий у человека является трисомия по хромосоме 21, которая приводит к развитию синдрома Дауна. Анеуплоидия характерна для опухолевых клеток, особенно для клеток сóлидных опухолей.

Полиплоидия

Основная статья: Полиплоидия

Изменение числа хромосом, кратное гаплоидному набору хромосом (n), называется полиплоидией. Полиплоидия широко и неравномерно распространена в природе. Известны полиплоидные эукариотические микроорганизмы — грибы и водоросли, часто встречаются полиплоиды среди цветковых, но не среди голосеменных растений. Полиплоидия клеток всего организма у многоклеточных животных редка, хотя у них часто встречается эндополиплоидия некоторых дифференцированных тканей, например, печени у млекопитающих, а также тканей кишечника, слюнных желёз, мальпигиевых сосудов ряда насекомых.

Хромосомные перестройки

Основная статья: Хромосомные перестройки

Хромосомные перестройки (хромосомные аберрации) — это мутации, нарушающие структуру хромосом. Они могут возникнуть в соматических и зародышевых клетках спонтанно или в результате внешних воздействий (ионизирующее излучение, химические мутагены, вирусная инфекция и др.). В результате хромосомной перестройки может быть утрачен или, наоборот, удвоен фрагмент хромосомы (делеция и дупликация, соответственно); участок хромосомы может быть перенесён на другую хромосому (транслокация) или он может изменить свою ориентацию в составе хромосомы на 180° (инверсия). Существуют и другие хромосомные перестройки.

Необычные типы хромосом

Микро- и макрохромосомы в метафазной пластинке курицы B-хромосомы в метафазной пластинке сибирской косули Capreolus pygargus Моноцентрическая (а) и голоцентрическая (b) хромосомы Политенные хромосомы в клетке слюнной железы у представителя рода Chironimus из семейства комары-звонцы (Chironomidae) Хромосома типа ламповых щеток из ядра ооцита тритона

Микрохромосомы

Основная статья: Микрохромосомы

У многих птиц и рептилий хромосомы в кариотипе образуют две чёткие группы: макрохромосомы и микрохромосомы. У некоторых видов микрохромосомы настолько мелкие и их так много, что невозможно отличить одну от другой. Микрохромосомы являются короткими по длине, но обогащёнными генами хромосомами. Например, кариотип курицы содержит 39 пар хромосом, 6 из которых относятся к макрохромосомам, а 33 — к минихромосомам. Макрохромосомы содержат две трети геномной ДНК, но только 25 % генов, в то время как микрохромосомы содержат оставшуюся треть геномной ДНК и 75 % генов. Таким образом, плотность генов в минихромосомах курицы в шесть раз выше, чем в макрохромосомах.

B-хромосомы

B-хромосомы — это добавочные хромосомы, которые имеются в кариотипе только у отдельных особей в популяции. Они часто встречаются у растений, описаны у грибов, насекомых и животных. Некоторые В-хромосомы содержат гены, часто это гены рРНК, однако не ясно, насколько эти гены функциональны. Наличие В-хромосом может влиять на биологические характеристики организмов, особенно у растений, где их наличие ассоциируется с пониженной жизнеспособностью. Предполагается, что В-хромосомы постепенно утрачиваются в соматических клетках в результате нерегулярности их наследования.

Голоцентрические хромосомы

Голоцентрические хромосомы не имеют первичной перетяжки, они имеют так называемый диффузный кинетохор, поэтому во время митоза микротрубочки веретена деления прикрепляются по всей длине хромосомы. Во время расхождения хроматид к полюсам деления у голоцентрических хромосом они идут к полюсам параллельно друг другу, в то время как у моноцентрической хромосомы кинетохор опережает остальные части хромосомы, что приводит к характерной V-образной форме расходящихся хроматид на стадии анафазы. При фрагментации хромосом, например, в результате воздействия ионизирующего излучения, фрагменты голоцентрических хромосом расходятся к полюсам упорядоченно, а не содержащие центромеры фрагменты моноцентрических хромосом распределяются между дочерними клетками случайным образом и могут быть утрачены.

Голоцентрические хромосомы встречаются у протист, растений и животных. Голоцентрическими хромосомами обладает нематода C. elegans.

Гигантские формы хромосом

Политенные хромосомы

Основная статья: Политенные хромосомы

Политенные хромосомы — это гигантские скопления объединённых хроматид, возникающие в некоторых типах специализированных клеток. Впервые описаны Эдуар-Жераром Бальбиани (фр. Édouard-Gérard Balbiani) в 1881 году в клетках слюнных желёз мотыля (Chironomus), их исследование было продолжено уже в 1930-х годах Костовым, Пейнтером, Хайнцем (нем. Emil Heintz) и Бауэром (Hans Bauer). Политенные хромосомы обнаружены также в клетках слюнных желёз, кишечника, трахей, жирового тела и мальпигиевых сосудов личинок двукрылых.

Хромосомы типа ламповых щёток

Основная статья: Хромосомы типа ламповых щёток

Хромосомы типа ламповых щёток — это гигантская форма хромосом, которая возникает в мейотических женских клетках на стадии диплотены профазы I у некоторых животных, в частности, у некоторых земноводных и птиц. Эти хромосомы являются крайне транскрипционно активными и наблюдаются в растущих ооцитах тогда, когда процессы синтеза РНК, приводящие к образованию желтка, наиболее интенсивны. В настоящее время известно 45 видов животных, в развивающихся ооцитах которых можно наблюдать такие хромосомы. Хромосомы типа ламповых щёток не образуются в ооцитах млекопитающих.

Впервые хромосомы типа ламповых щёток были описаны В. Флеммингом в 1882 году. Название «хромосомы типа ламповых щёток» было предложено немецким эмбриологом И. Рюккертом (J. Rϋckert) в 1892 году.

По длине хромосомы типа ламповых щёток превышают политенные хромосомы. Например, общая длина хромосомного набора в ооцитах некоторых хвостатых амфибий достигает 5900 мкм.

Бактериальные хромосомы

Прокариоты (археи и бактерии, в том числе митохондрии и пластиды, постоянно обитающие в клетках большинства эукариот) не имеют хромосом в собственном смысле этого слова. У большинства из них в клетке имеется только одна макромолекула ДНК, замкнутая в кольцо (эта структура получила название нуклеоид). У ряда бактерий обнаружены линейные (не замкнутые в кольцо) макромолекулы ДНК. Помимо нуклеоида или линейных макромолекул, ДНК может присутствовать в цитоплазме прокариотных клеток в виде небольших замкнутых в кольцо молекул ДНК, так называемых плазмид, содержащих обычно незначительное, по сравнению с бактериальной хромосомой, число генов. Состав плазмид может быть непостоянен, бактерии могут обмениваться плазмидами в ходе парасексуального процесса.

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида, но гистонов у них не обнаружено.

Хромосомы человека

Нормальный кариотип человека представлен 46 хромосомами. Это 22 пары аутосом и одна пара половых хромосом (XY в мужском кариотипе и XX — в женском). В приведённой ниже таблице показано число генов и оснований в хромосомах человека.

Изображение 46 (23 пар) хромосом женского кариотипа человека, полученное с помощью FISH с флуоресцентно-мечеными Alu-повторами. Alu-повторы показаны зелёным цветом, ДНК — красным. У человека самая длинная 1-я хромосома примерно в 5 раз длиннее самой короткой 21-й хромосомы.

Хромосома Всего оснований Количество генов Количество белок-кодирующих генов
1 249250621 3511 2076
2 243199373 2368 1329
3 198022430 1926 1077
4 191154276 1444 767
5 180915260 1633 896
6 171115067 2057 1051
7 159138663 1882 979
8 146364022 1315 702
9 141213431 1534 823
10 135534747 1391 774
11 135006516 2168 1914
12 133851895 1714 1068
13 115169878 720 331
14 107349540 1532 862
15 102531392 1249 615
16 90354753 1326 883
17 81195210 1773 1209
18 78077248 557 289
19 59128983 2066 1492
20 63025520 891 561
21 48129895 450 246
22 51304566 855 507
X-хромосома 155270560 1672 837
Y-хромосома 59373566 429 76
Всего 3 079 843 747 36463

> См. также

  • Фундаментальное число
  • Хромомеры

Примечания

  1. 1 2 Тарантул В. З. Толковый биотехнологический словарь. — М.: Языки славянских культур, 2009. — 936 с. — 400 экз. — ISBN 978-5-9551-0342-6.
  2. Молекулярная биология клетки: в 3-х томах / Б. Альбертс, А. Джонсон, Д. Льюис и др. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — Т. I. — 808 с. — ISBN 978-5-4344-0112-8. — С. 309—336.
  3. Коряков, Жимулёв, 2009, с. 13.
  4. Филипченко Ю. А. Генетика. — Л.: Типография «Печатный Двор», 1929. — 379 с.
  5. Коряков, Жимулёв, 2009, с. 9.
  6. 1 2 Коряков, Жимулёв, 2009, с. 12.
  7. Morgan T. H., Sturtevant A. H., Muller H. J., Bridges C. B. The mechanism of mendelian heredity. — New York: Henry Holt and Company, 1915. — 262 с.
  8. The Nobel Prize in Physiology or Medicine 1933 (англ.). // Nobel Media AB 2013. Дата обращения 11 декабря 2013.
  9. Рубцов Н. Б. Хромосома человека в четырёх измерениях (рус.) // Природа. — Наука, 2007. — № 8. — С. 3—10.
  10. Рубцов Н. Б. Организация хромосом: 70 лет спустя (рус.) // Природа. — Наука, 2012. — № 10. — С. 24—31.
  11. Коряков, Жимулёв, 2009, с. 29.
  12. 1 2 Смирнов А. Ф. Структурно-функциональная организация хромосом. — СПб.: Нестор-История, 2009. — 204 с. — ISBN 978-5-98187-486-4.
  13. Вершинин А. В. Центромеры и теломеры хромосом (рус.) // Природа. — Наука, 2007. — № 9. — С. 21—27.
  14. Инге-Вечтомов, 2010, с. 84—87.
  15. Коряков, Жимулёв, 2009, с. 30.
  16. Pikaard C. S. The epigenetics of nucleolar dominance (англ.) // Trends in Genetics. — Cell Press (англ.)русск., 2000. — Vol. 16, no. 11. — P. 495—500.
  17. Зощук Н. В., Бадаева Е. Д., Зеленин А. В. История современного хромосомного анализа. Дифференциальное окрашивание хромосом растений // Онтогенез. — 2003. — Т. 34, № 1. — С. 5—18. — PMID 12625068.
  18. Рубцов Н. Б. Методы работы с хромосомами млекопитающих: Учеб. пособие. — Новосибирск: Новосиб. гос. ун-т, 2006. — 152 с. — ISBN 5-94356-376-8.
  19. Коряков, Жимулёв, 2009, с. 91.
  20. Разин С. В. Хроматин: упакованный геном / С. В. Разин, А. А. Быстрицкий. — М.: БИНОМ: Лаборатория знаний, 2009. — 176 с. — ISBN 978-5-9963-0087-7.
  21. Ченцов Ю. С., Бураков В. В. Хромонема — забытый уровень укладки хроматина в митотических хромосомах // Биологические мембраны. — 2005. — Т. 22, № 3. — С. 178—187. — ISSN 0233-4755.
  22. Коряков, Жимулёв, 2009, с. 45—46.
  23. Hassold T., Hall H., Hunt P. The origin of human aneuploidy: where we have been, where we are going // Human Molecular Genetics (англ.)русск.. — Oxford University Press, 2007. — Vol. 16, spec. no. 2. — P. R203—R208. — DOI:10.1093/hmg/ddm243. — PMID 17911163.
  24. Holland A. J., Cleveland D. W. Losing balance: the origin and impact of aneuploidy in cancer // EMBO Reports. — 2012. — Vol. 13, no. 6. — P. 501—514. — DOI:10.1038/embor.2012.55. — PMID 22565320.
  25. Инге-Вечтомов, 2010, с. 401—414.
  26. Коряков, Жимулёв, 2009, с. 31.
  27. 1 2 Браун Т. А. Геномы / Пер. с англ. = Genomes. — М.-Ижевск: Институт компьютерных исследований, 2011. — 944 с. — ISBN 978-5-4344-0002-2.
  28. Mandrioli M., Manicardi G. C. Unlocking holocentric chromosomes: new perspectives from comparative and functional genomics? // Current Genomics. — 2012. — Vol. 13, no. 5. — P. 343—349. — DOI:10.2174/138920212801619250. — PMID 23372420.
  29. Dernburg A. F. Here, there, and everywhere: kinetochore function on holocentric chromosomes // The Journal of Cell Biology. — 2001. — Vol. 153, no. 6. — P. F33—F38. — PMID 11402076.
  30. Gall J. G. Are lampbrush chromosomes unique to meiotic cells? // Chromosome Research. — 2012. — Vol. 20, no. 8. — P. 905—909. — DOI:10.1007/s10577-012-9329-5. — PMID 23263880.
  31. Macgregor H. So what’s so special about these things called lampbrush chromosomes? // Chromosome Research. — 2012. — Vol. 20, no. 8. — P. 903—904. — DOI:10.1007/s10577-012-9330-z. — PMID 23239398.
  32. Bolzer, Andreas; Kreth, Gregor; Solovei, Irina; Koehler, Daniela; Saracoglu, Kaan; Fauth, Christine; Müller, Stefan; Eils, Roland; Cremer, Christoph; Speicher, Michael R.; Cremer, Thomas. Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes (англ.) // PLoS Biology : journal. — 2005. — Vol. 3, no. 5. — P. e157. — DOI:10.1371/journal.pbio.0030157. — PMID 15839726.
  33. Human Genome Assembly Information (англ.). // Genome Reference Concortium. Дата обращения 18 апреля 2013.
  34. Homo sapiens Genome: Statistics — Build 37.3. // NCBI. Дата обращения 18 апреля 2013.
  35. Ensembl. Location: whole genome (англ.). // The Ensembl project. Дата обращения 25 апреля 2013. Архивировано 28 апреля 2013 года.

Литература

  • Захаров А. Ф., Бенюш В. А., Кулешов Н. П., Барановская Л. И. Хромосомы человека. Атлас. — М.: Медицина, 1982. — 263 с.
  • Инге-Вечтомов С. Г. Генетика с основами селекции: учебник для студентов высших учебных заведений. — СПб.: Изд-во Н-Л, 2010. — 720 с. — ISBN 978-5-94869-105-3. — С. 193—194.
  • Коряков Д. Е., Жимулев И. Ф. Хромосомы. Структура и функции. — Новосибирск: Изд-во СО РАН, 2009. — 258 с. — ISBN 978-5-7692-1045-7.
  • Лима-де-Фариа А. Похвала «глупости» хромосомы. — М.: БИНОМ. Лаборатория знаний, 2012. — 312 с. — ISBN 978-5-9963-0148-5.
  • Молекулярная биология клетки: в 3-х томах / Б. Альбертс, А. Джонсон, Д. Льюис и др. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — Т. I. — 808 с. — ISBN 978-5-4344-0112-8. — С. 325—359.

Словари и энциклопедии

Нормативный контроль

GND: 4010162-9 · LCCN: sh85025391 · NDL: 00570780

Гистоны: H1 · H2A · H2B · H3 · H4

Основное Кариотип · Плоидность · Мейоз · Митоз · Гомологичные хромосомы · Синапсис · Хромосомные территории
Классификация
Структура Хроматиды Теломеры Центромера Хроматин Нуклеосома
Перестройки и
нарушения
Транслокация · Дупликация · Делеция · Инверсия · Сестринский хроматидный обмен · Анеуплоидия · Полиплоидия · Амфидиплоиды
Хромосомное
определение пола
Гетерогаметный пол · Гомогаметный пол · XY-система: · X-хромосома · Y-хромосома · SRY · ZW-система · Псевдоаутосомная область
Методы Цитогенетика · Картирование · FISH · Ана-телофазный метод · Метафазный метод

Хромосомы

  • Что такое хромосомы
  • История открытия хромосом
  • Хромосомная теория наследственности
  • Строение хромосом
  • Формы и виды хромосом
  • Функции хромосом
  • Набор хромосом
  • Хромосомный набор человека
  • Генетические болезни, связанные с хромосомами
  • Хромосомы, видео
  • Хромосомы представляют собой нуклеопротеидные структуры эукариотической клетки, в которых хранится большая часть наследственной информации. Благодаря своей способности к самовоспроизведению, именно хромосомы обеспечивают генетическую связь поколений. Хромосомы образуются из длинной молекулы ДНК, в которой содержится линейная группа множества генов, и вся генетическая информация будь-то о человеке, животном, растении или любом другом живом существе.

    Морфология хромосом связана с уровнем их спирализации. Так, если во время стадии интерфазы хромосомы максимально развернуты, то с началом деления хромосомы активно спирализуются и укорачиваются. Своего максимального укорочения и спирализации они достигают во время стадии метафазы, когда происходит формирование новых структур. Эта фаза наиболее удобна для изучения свойств хромосом, их морфологических характеристик.

    Еще в середине позапрошлого XIX века многие биологи изучая в микроскопе строение клеток растений и животных, обратили внимание на тонкие нити и мельчайшие кольцевидные структуры в ядре некоторых клеток. И вот немецкий ученый Вальтер Флеминг применив анилиновые красители для обработки ядерных структур клетки, что называется «официально» открывает хромосомы. Точнее обнаруженное вещество было им названо «хроматид» за его способность к окрашиванию, а термин «хромосомы» в обиход чуть позже (в 1888 году) ввел еще один немецкий ученый – Генрих Вайлдер. Слово «хромосома» происходит от греческих слов «chroma» – окраска и «somo» – тело.

    Хромосомная теория наследственности

    Разумеется, история изучения хромосом не закончилась на их открытии, так в 1901-1902 годах американские ученые Уилсон и Сатон, причем независимо друг от друга, обратили внимание на сходство в поведении хромосом и менделеевских факторов наследственности – генов. В результате ученые пришли к заключению, что гены находятся в хромосомах и именно посредством их из поколения в поколения, от родителей к детям передается генетическая информация.

    В 1915-1920 годам участие хромосом в передаче генов было доказано на практике в целой серии опытов, сделанных американским ученым Морганом и сотрудниками его лаборатории. Им удалось локализировать в хромосомах мухи-дрозофилы несколько сот наследственных генов и создать генетические карты хромосом. На основе этих данных была создана хромосомная теория наследственности.

    Строение хромосом

    Строение хромосом разнится в зависимости от вида, так метафазная хромосома (образующаяся в стадии метафазе при митозном делении клетки) состоит из двух продольных нитей – хроматид, которые соединяются в точке, именуемой центромерой. Центромера – это участок хромосомы, который отвечает за расхождение сестринских хроматид в дочерние клетки. Она же делит хромосому на две части, названные коротким и долгим плечом, она же отвечает за деление хромосомы, так как именно в ней содержится специальное вещество – кинетохор, к которому крепятся структуры веретена деления.

    Тут на картинке показано наглядное строение хромосомы: 1. хроматиды, 2. центромера, 3. короткое плечо хроматид, 4. длинное плечо хроматид. На концах хроматид располагаются теломеры, специальные элементы, которые защищают хромосому от повреждений и препятствуют слипанию фрагментов.

    Формы и виды хромосом

    Размеры хромосом растений и животных значительно различаются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в диапазоне от 1,5 до 10 микрон. В зависимости от вида хромосомы отличаются и ее способности к окрашиванию. В зависимости от расположения центромеры различают такие формы хромосом:

    • Метацентрические хромосомы, для которых характерно срединное расположение центромеры.
    • Субметацентрические, для них характерно неравномерное расположение хроматид, когда одно плечо более длинное, а второе более короткое.
    • Акроцентрические или палочковидные. У них центромера расположена практически в самом конце хромосомы.

    Основные функции хромосом, как для животных, так и для растений и вообще всех живых существ – передача наследственной, генетической информации от родителей к детям.

    Значение хромосом столь велико, что их количество в клетках, а также особенности каждой хромосомы определяют характерный признак того или иного биологического вида. Так, например, у мухи-дрозофилы в наличии 8 хромосом, у обезьян – 48, а хромосомный набор человека составляет 46 хромосом.

    В природе существует два основных типа набора хромосом: одиночный или гаплоидный (содержится в половых клетках) и двойной или диплоидный. Диплоидный набор хромосом имеет парную структуру, то есть вся совокупность хромосом состоит из хромосомных пар.

    Хромосомный набор человека

    Как мы уже написали выше, клетки человеческого организма содержат 46 хромосом, которые объединены в 23 пары. Все вместе они и составляют хромосомный набор человека. Первые 22 пары человеческих хромосом (их называют аутосомами) являются общими как для мужчин, так и для женщин, и лишь 23 пара – половых хромосом – разнится у разных полов, она же определяет половую принадлежность человека. Совокупность всех пар хромосом также называется кариотипом.

    Такой вид имеет хромосомный набор человека, 22 пары двойных диплоидных хромосом содержат всю нашу наследственную информацию, и последняя пара различается, у мужчин она состоит из пары условных X и Y половых хромосом, в то время как у женщин в наличии две хромосомы Х.

    Аналогичную структуру хромосомного набора имеют и все животные, только количество неполовых хромосом у каждого из них свое.

    Генетические болезни, связанные с хромосомами

    Нарушение в работе хромосом, или даже само их неправильно количество является причиной многих генетических заболеваний. Например, синдрома Дауна появляется из-за наличия лишней хромосомы в хромосомном наборе человека. А такие генетические болезни как дальтонизм, гемофилия вызваны сбоями в работе имеющихся хромосом.

    Хромосомы, видео

    И в завершение интересно образовательное видео про хромосомы.

    Эта статья доступна на английском языке – Chromosomes.

    22 . Строение хромосом, их типы, классификация в кариотипе человека.

    Хромосомы — это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений. Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы). Из 46 хромосом, составляющих хромосомный набор человека, 44 или 22 пары представляют аутосомные хромосомы, последняя пара — половые хромосомы. У женщин конституция половых хромосом в норме представлена двумя хромосомами X, а у мужчин — хромосомами X и У. Во всех парах хромосом как аутосомных, так и половых одна из хромосом получена от отца, а вторая — от матери. Хромосомы одной пары называются гомологами, или гомологичными хромосомами. В половых клетках (сперматозоидах и яйцеклетках) содержится гаплоидный набор хромосом, т.е. 23 хромосомы. Сперматозоиды делятся на два типа в зависимости от того, содержат ли они хромосому X или Y. Все яйцеклетки в норме содержат только хромосому X. Хромосомы хорошо видны после специальной окраски во время деления клеток, когда хромосомы максимально спира-лизованы. При этом в каждой хромосоме выявляется перетяжка, которая называется центромерой. Центромера делит хромосому на короткое плечо (обозначается буквой «р») и длинное плечо (обозначается буквой «q»). Центромера определяет движение хромосомы во время клеточного деления. По положению центромеры хромосомы классифицируют на несколько групп. Если центромера располагается посредине хромосомы, то такая хромосома называется метацентриче-ской, если центромера располагается ближе к одному из концов хромосомы, то ее называют акроцентрической. Некоторые акроцентрические хромосомы имеют так называемые спутники, которые в неделящейся клетке формируют ядрышки. Ядрышки содержат многочисленные копии рРНК. Кроме того, различают субметацентрические хромосомы, когда центромера расположена не посредине хромосомы, а несколько сдвинута к одному из концов, но не столь значительно, как в акроцентрических хромосомах. Концы каждого плеча хромосомы называют теломерами. Установлено, что теломеры играют важную роль в сохранении стабильности хромосом. В теломерах содержится большое число повторов последовательности нуклеотидов ТТАГГГ, так называемых тандемных повторов. В норме во время клеточного деления происходит уменьшение числа этих повторов в теломерах. Однако каждый раз они достраиваются с помощью специального фермента, который называют теломеразой. Уменьшение активности этого фермента приводит к укорочению теломер, что, как полагают, является причиной гибели клеток, а в норме сопровождает старение.

    23 . Хромосомная теория т.Моргана.

    Основоположник теории Томас Гент Морган, американский генетик, нобелевский лауреат, выдвинул гипотезу об ограничении законов Менделя.

    В экспериментах он использовал плодовую мушку-дрозо-филу, обладающую важными для генетических экспериментов качествами: неприхотливостью, плодовитостью, небольшим количеством хромосом (четыре пары), множеством четко выраженных альтернативных признаков.

    Морган и его ученики установили следующее:

    1. Гены, расположенные в одной хромосоме, наследуются совместно или сцепленно.

    2. Группы генов, расположенных в одной хромосоме, образуют группы сцепления. Число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и п+1 у гетерогаметных особей.

    3. Между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов.

    4. Частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимают 1 морганиду (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.

    5. Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строят генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы. Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности. Важнейшими следствиями этой теории являются современные представления о гене как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.

    ХРОМОСОМЫ, ИХ ТИПЫ И СТРОЕНИЕ

    Наиболее важной составной частью ядра являются хромосомы. Им принадлежит ведущая роль в наследственности. В момент деления клетки хромосомы хорошо видны в световой микроскоп. Хромосомы неделящихся ядер не видны, так как они деконденсированы. В то же время показано, что чем выше степень деконденсации хромосом, тем активнее протекают метаболические процессы в самом ядре. Морфологически хромосомы растений чаще всего имеют нитевидную или палочкообразную форму.

    Большинство хромосом разделено первичной перетяжкой на два плеча. Под микроскопом первичная перетяжка представлена светлой (неокрашенной) зоной, получившей название центромеры. Она играет основную роль в перемещении хромосом при делении ядра. На каждой из хромосом центромера занимает строго определенное место. По положению центромеры хромосомы делятся на метацентри- ческие (приблизительно равноплечие), субметацентрические (неравноплечие), субакроцентрические, акроцентрические (головчатые) и телоцентрические, у которых центромера сдвинута к одному из концов (рис. 2.2).

    Встречаются хромосомы, у которых имеется и вторичная перетяжка. Она, как правило, располагается у дистального конца хромосомы и отделяет небольшой ее участок, получивший название спутника. Вторичная перетяжка не участвует в движении хромосом при ядерном делении. Она получила название ядрышкового организатора, поскольку в этом месте происходит образование ядрышка. Концевые участки хромосом получили название теломерных. Теломерные концы хромосом препятствуют соединению одной хромосомы с другой.

    Рис. 2.2. Тйпы метафазных хромосом в зависимости от положения центромеры:

    слева направо — метацентрическая, суб- метацентрическая, субакроцентричес- кая, акроцентричсская, телоцентрическая (Levan, 1968)

    одинаковыми буквами помечены гомологичные хромосомы (Любашев, 1967. — С. 9)

    Рис. 2.3. Диплоидный набор метафазных хромосом в клетке Crepis capilaris (2л=6):

    2.1. Число хромосом у некоторых видов растений

    Вид

    Число хромосом (2 n)

    Пшеница мягкая (Triticum aestivum)

    Пшеница твердая (Triticum durum)

    Ячмень (Hordeum vulgare)

    Рожь (Secale cereale)

    Овес (Avena saliva)

    Кукуруза (Zea mays)

    Рис (Oryza sativa)

    Горох (Pisum sativum)

    Бобы конские (Vicia faba)

    Соя (Glycine soya)

    Арабидопсис (Arabidopsis thaliana)

    Люпин узколистный (Lupinus angusti/olius)

    Чечевица (Lens esculenta)

    Лен (Linum usitatissimum)

    Картофель (Solanum tuberosum)

    Лук (Allium сера)

    Свекла (Beta vulgaris)

    Подсолнечник (Helianthus annuus)

    Топинамбур ( Helianthus tuberosus)

    Салат латук (Lactuca sativa)

    Томат (Lycopersicon esculentum)

    Каждому из населяющих нашу планету видов растений и животных свойственно строго определенное число хромосом, обозначаемое 2п (табл. 2.1).

    В половых клетках число хромосом в два раза меньше (гаплоидное число) и обозначается п. В соматических клетках организма каждая из хромосом имеет пару, идентичную как морфологически (рис. 2.3), так

    Рис. 2.4. Идиограмма хромосом сорта твердой пшеницы Капелли

    (Giorgi, 1964, с добавлениями) и генетически. Исключение из этого правила у гетерогаметных особей составляют половые хромосомы.

    Специфический для определенного вида по числу и структуре набор хромосом получил название кариотипа.

    Рис. 2.6. Схемы субметаценгрической хромосомы:

    А — внешний вид: / — спутник, 2-вторичная перетяжка, 3 — центромера, 4 — волокно веретена; Б — внутреннее строение: 1 — две хромонемы

    (а — большая и 6 — малая спирали) (Робертис, Новински, Саэрс; по Атабековой, Устиновой,1967. — С. 70)

    Рис. 2.5. Дифференциально окрашенные хромосомы Т. durum

    (фото любезно предоставлено ЕД.Бадаевой)

    Графическое изображение кариотипа, показывающее его структурные особенности, называется идиограммои (рис. 2.4). В последние годы получил распространение метод дифференциального окрашивания хромосом. При его использовании на каждой из хромосом прокрашиваются специфические, характерные для нее гетерохроматиновые участки (бэнды), что значительно облегчает идентификацию отдельных хромосом кариотипа (рис. 2.5).

    Хромосомы, по которым отличаются особи разного пола, получили название половых хромосом, а все остальные хромосомы — аутосом.

    Внутреннее строение каждой хромосомы чрезвычайно сложно. По химическому составу хромосомы состоят из ДНК (до 40 %), РНК и белков, из которых в среднем около 60 % приходится на гистоны. Строение мета

    фазной хромосомы при исследовании с помощью светового микроскопа представляется следующим образом (рис. 2.6).

    Каждая хромосома состоит из двух хроматид, спирально закрученных и располагающихся параллельно оси хромосомы. Для прокрашивающихся в интерфазном ядре участков хромосом используют термин

    Рис. 2.7. Схема различных уровней комнактизации хромосом:

    1- нуклеосомный; 2- нуклеомерный; 3- хромомерный (петлевой домен); 4- хромо- немный; 5 — петлистых структур (Ченцов, 1995. — С. 129)

    Рис. 2.8. Размеры хромосомных фибрилл (Russell, 1998; по Жнмулсву, 2002. — С. 309)

    «хромонема» — красящаяся нить. Утолщения на хромонемах получили название хромомер. Особенность вышеописанного строения хромосом зависит от уровня компактизации хроматина (комплекс ДНК с гистонами), который меняется при переходе от интерфазного состояния хромосом к метафазному. Процесс компактизации хроматина проходит по Ченцову (1995) следующие уровни (рис. 2.7).

    Первый, получивший название нуклеосомного, определяет скручивание ДНК по поверхности гистоновой сердцевины. Второй — объединение нескольких нуклеосом (до 10) в бусину —называется нуклео- мерным. Третий уровень — объединение скрепками из негистоновых белков фибрилл дезоксирибонуклеопротеида в петлевой домен, называемый хромомером. Четвертый уровень — это образование хромонем, которое происходит при сближении в линейном порядке хромомер, и образование толстой нити (0,1-0,2 мкм). Далее, по-видимому, хромонема укладывается в виде спирали в хроматиде, хотя весьма вероятно, что это еще один (пятый) уровень «петлистых структур». Размеры, которые приобретают хромосомные фибриллы в результате компактизации, представлены на рисунке 2.8.

    Особенности репликации линейных геномов

    • •Часть I. Механизмы хранения и реализации генетической информации 17
    • •Предисловие автора
    • •Часть I. Механизмы хранения и реализации генетической информации введение
    • •Средний размер гаплоидного генома у некоторых групп организмов
    • •Гены и хромосомы
    • •Геном прокариот
    • •Геном вирусов
    • •Нуклеоид бактериальной клетки
    • •Геном архебактерий
    • •Минимальный размер генома одноклеточных организмов
    • •Геном эукариот
    • •Последовательности нуклеотидов эукариотического генома
    • •Хроматин
    • •Свойства гистонов животных
    • •Роль днк-топоизомераз в обеспечении структуры и функционирования хроматина
    • •Реализация генетической информации при экспрессии генов
    • •Транскрипция
    • •Днк-зависимые рнк-полимеразы
    • •Характеристики белковых компонентов холофермента рнк-полимеразы II дрожжей
    • •Единицы транскрипции (транскриптоны)
    • •Этапы транскрипции
    • •Субъединичный состав и характеристика основных факторов транскрипции (gtf) рнк-полимеразы II человека
    • •Основные факторы элонгации рнк-полимеразы II
    • •Хроматин во время транскрипции
    • •Субъединичный состав и свойства белковых комплексов Swi/Snf и nurf
    • •Котранскрипционные и посттранскрипционные модификации рнк
    • •Процессинг рнк у бактерий
    • •Редактирование пре-мРнк
    • •Различные способы редактирования мРнк
    • •Редактирование рнк у животных и их вирусов
    • •Другие модификации эукариотических мРнк
    • •Сравнение полиаденилирования мРнк у эукариот и прокариот
    • •5’-Концевой сайт Точка 3’-Концевой сайт
    • •5’–Экзон 1guaugu__…__uacuaac__…__(Py)nAgэкзон 2–3’
    • •Механизм прямой и обратной реакций аутосплайсинга интронов группы I
    • •Кэп-связывающий комплекс в роли фактора, сопрягающего основные реакции метаболизма транскриптов рнк-полимеразы II
    • •Функциональная компартментализация ядра
    • •Интерфазные хромосомы в ядре
    • •Ядрышко
    • •Пространственная организация синтеза мРнк
    • •Ядерные тельца и домены
    • •Компартментализованное ядро
    • •Биосинтез белка рибосомами бактерий
    • •Рибосомы
    • •Этапы биосинтеза белка
    • •Антибиотики, действующие на уровне трансляции
    • •Трансляция у эукариот
    • •Особенности первичной структуры эукариотических мРнк
    • •Инициация биосинтеза белка эукариотическими рибосомами
    • •Элонгация полипептидных цепей
    • •Терминация трансляции
    • •Трансляция в митохондриях
    • •Трансляция в хлоропластах.
    • •Основные пути регуляции экспрессии генов
    • •Регуляция экспрессии генов на уровне транскрипции у прокариот
    • •Регуляция на уровне инициации транскрипции
    • •Регуляция синтеза рнк на уровне элонгации и терминации
    • •Регуляция экспрессии генов на уровне транскрипции у эукариот
    • •Передача сигнала и вторичные мессенджеры
    • •Рецепторы мембран, осуществляющие трансмембранный перенос сигнала
    • •Механизмы позитивной регуляции транскрипции
    • •Классификация факторов транскрипции
    • •Функциональные домены факторов транскрипции
    • •Механизмы негативной регуляции транскрипции
    • •Структура хроматина как специфический регулятор экспрессии генов
    • •Импринтинг
    • •Метилирование днк в регуляции транскрипции
    • •Факторы транскрипции позвоночных, на активность которых оказывает влияние метилирование остатков цитозина в узнаваемых ими регуляторных последовательностях нуклеотидов
    • •Посттранскрипционная регуляция экспрессии генов
    • •Направленный транспорт, внутриклеточная локализация и депонирование мРнк
    • •Сплайсинг рнк в регуляции экспрессии генов
    • •Избирательная деградация мРнк
    • •Регуляция экспрессии генов на уровне трансляции
    • •Регуляция инициации трансляции
    • •Регуляция элонгации синтеза полипептидных цепей
    • •Регуляция терминации трансляции
    • •Синтез белков, содержащих остатки селеноцистеина
    • •Посттрансляционная регуляция экспрессии генов
    • •Последствия фолдинга вновь синтезированных полипептидных цепей
    • •Специфические протеиназы в посттрансляционном процессинге белков
    • •Убиквитин-зависимая система протеолиза в регулируемой деградации белков
    • •Сплайсинг белков
    • •Другие посттрансляционные модификации белков
    • •Воспроизведение генетической информации
    • •Репликация днк
    • •Белки, участвующие в репликации днк
    • •Белки, входящие в состав репликативных комплексов прокариотических и эукариотических организмов
    • •Репликативная вилка e. Coli и бактериофага t4
    • •Особенности функционирования репликативной вилки эукариот
    • •Эукариотические днк-полимеразы и их функциональные гомологи у прокариот
    • •Регуляция репликации днк
    • •Инициация репликации днк у e. Coli и ее регуляция
    • •Регуляция репликации плазмиды ColE1
    • •Особенности репликации линейных геномов
    • •Линейные хромосомы бактерий
    • •Репликаторы эукариот
    • •Репликация теломерных участков эукариотических хромосом
    • •Пространственная организация синтеза днк у эукариот
    • •Защита генетической информации
    • •Мутации
    • •Основные источники мутаций и методы определения мутагенной активности
    • •Основные классы алкилирующих агентов
    • •Метаболиты нормальной микрофлоры человека, обладающие мутагенной и канцерогенной активностями
    • •Sos-мутагенез у бактерий
    • •Мутаторный фенотип
    • •Экспансия днк
    • •Адаптивные мутации
    • •Механизмы защиты генома от мутаций
    • •Репарация днк
    • •Основные механизмы репарации поврежденной днк
    • •Эксцизионная репарация в клетках животных
    • •Днк-гликозилазы и эндонуклеазы клеток микроорганизмов и человека, участвующие в ber
    • •Белки животных, участвующие в ner
    • •Гомологичная рекомбинация в репарации днк
    • •Репарация ошибочно спаренных нуклеотидов
    • •Полимераза поли(adp-рибозы) в репарации днк у эукариот
    • •Альтруистичная днк
    • •Парадокс возможности существования многоклеточных организмов
    • •Повышение информационной стабильности генома избыточными последовательностями
    • •Селективная защита генов от мутаций
    • •Высокоупорядоченное расположение летальных генов на хромосомах
    • •Возможный смысл парадокса с
    • •Современная концепция гена
    • •Часть II основные направления развития прикладной молекулярной генетики Введение
    • •Часть II. Искусственные генетические системы
    • •Принципы генной инженерии
    • •Основные ферменты, используемые в генной инженерии
    • •Рестриктазы и днк-метилазы
    • •Эффективность расщепления коротких последовательностей днк некоторыми распространенными рестриктазами
    • •Днк- и рнк-лигазы
    • •Ферменты матричного синтеза днк и рнк
    • •Частота ошибок при синтезе днк, осуществляемом термостабильными днк-полимеразами in vitro при проведении пцр в оптимальных условиях
    • •Другие ферменты
    • •Векторы
    • •Плазмидные векторы
    • •Векторы на основе фага 
    • •Космиды и фазмиды
    • •Сверхъемкие векторы yac, bac и pac
    • •Интегрирующие и челночные (бинарные) векторы
    • •Конструирование экспрессирующих векторов и их функционирование
    • •Векторы для переноса днк в клетки животных и растений
    • •Клонотеки генов
    • •Получение клонотек генов
    • •Введение рекомбинантных днк в клетки
    • •Методы скрининга клонотек генов
    • •Эукариотические системы экспрессии рекомбинантных генов, основанные на культурах клеток
    • •Клетки яичников китайских хомячков (линия cho)
    • •Клетки мышиной миеломы (линия Sp2/0)
    • •Клетки селезенки мышей (линия mel)
    • •Клетки африканской зеленой мартышки (линия cos)
    • •Клетки насекомых, зараженные бакуловирусами
    • •Сравнение эффективности рассмотренных систем экспрессии
    • •Бесклеточные белоксинтезирующие системы
    • •Прокариотические системы
    • •Эукариотические системы
    • •Проточные системы
    • •Другие современные методы исследования генов
    • •Рестрикционное картирование генов
    • •»Прогулки и прыжки по хромосомам»
    • •S1-картирование рнк и днк
    • •Футпринтинг
    • •Стратегия выделения нового гена
    • •Направленный мутагенез и белковая инженерия
    • •Методы направленного получения мутаций
    • •Получение делеций и вставок
    • •Химический мутагенез
    • •Сайт-специфический мутагенез с использованием олигонуклеотидов
    • •Полимеразная цепная реакция в направленном мутагенезе
    • •Белковая инженерия
    • •Библиотеки пептидов и эпитопов
    • •Белки-репортеры в гибридных белках
    • •Гибридные токсины
    • •Подходы к созданию новых ферментов
    • •Субтилигаза в лигировании пептидов
    • •Концепция ксенобиоза
    • •Антисмысловые рнк, рибозимы и дезоксирибозимы
    • •Антисмысловые рнк и олигонуклеотиды
    • •Механизм действия антисмысловых рнк
    • •Использование антисмысловых рнк
    • •Влияние экспрессии антисмысловых рнк на фенотип трансгенных мышей
    • •Природные антисмысловые рнк
    • •Антисмысловые рнк и патология: возможный механизм возникновения доминантных мутаций
    • •Рибозимы и дезоксирибозимы
    • •Типы рибозимов
    • •Свойства рибозимов
    • •Рибозимы как лекарственные средства
    • •Репарация мутантных рнк с помощью рибозимов, осуществляющих транс-сплайсинг
    • •Дезоксирибозимы
    • •Аптамеры
    • •Молекулы рнк у истоков жизни
    • •Молекулы рнк в качестве рнк-репликаз
    • •Возможность синтеза полипептидных цепей молекулами рнк
    • •Трансгенные животные и растения
    • •Способы получения трансгенных многоклеточных организмов
    • •Экспрессия трансгенов
    • •Использование трансгенов у животных
    • •Исследование механизмов экспрессии генов
    • •Токсигены в исследовании дифференцировки соматических клеток в онтогенезе
    • •Изменение физиологического статуса лабораторных и сельскохозяйственных животных
    • •Моделирование наследственных и приобретенных заболеваний человека
    • •Трансгенные растения
    • •Генотерапия наследственных и приобретенных заболеваний
    • •Способы доставки новых генов в геном человека
    • •Управление экспрессией трансгенов в клетках-мишенях
    • •Современные достижения генотерапии онкологических заболеваний
    • •Ближайшие перспективы использования генотерапии
    • •Успехи генотерапии в модельных экспериментах
    • •Проблемы, возникающие в связи с практическим применением генотерапии
    • •Днк-диагностика и днк-типирование
    • •Днк-диагностика наследственных и приобретенных заболеваний
    • •Получение клинического генетического материала
    • •Диагностика заболеваний
    • •Днк-типирование
    • •Днк-типирование микроорганизмов
    • •Идентификация личности на основе минисателлитной днк: определение отцовства
    • •Микроматрицы и микрочипы днк
    • •Методы создания микроматриц днк
    • •Ограничения в использовании микроматриц днк
    • •Использование микроматриц днк в фундаментальных и прикладных исследованиях
    • •Картирование и определение первичной структуры генома человека
    • •Основные подходы к картированию генома человека
    • •Генетические карты сцепления
    • •Современные методы построения генетических карт сцепления
    • •Пцр в исследованиях генома человека
    • •Физические карты низкого разрешения
    • •Физические карты высокого разрешения
    • •Определение полной первичной структуры днк генома человека
    • •Базы данных получаемой информации
    • •Заключение
    • •Рекомендуемая литература

    Хромосома

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *