Биосфера

Биосфера

У этого термина существуют и другие значения, см. Биосфера (значения).

Геосферы

Внутренние:

• Кора

— Континентальная

— Океаническая

• Мантия

— Астеносфера

— Верхняя

— Нижняя

• Ядро

— Внешнее

— Внутреннее

Внешние:

• Литосфера

— Осадочная

• Гидросфера

• Атмосфера

— Стратосфера

— Мезосфера

— Термосфера

• Ионосфера

• Магнитосфера

= Экзосфера

Комплексные:

• Географическая

• Биосфера

— Биогеосфера

— Экосфера

— Педосфера

• Криосфера

— Гляциосфера

= Барисфера

= Тектоносфера

Антропогенные:

Ноосфера

Антропосфера

Техносфера

Какосфера

Строение Земли

Биосфе́ра (от др.-греч. βιος — жизнь и σφαῖρα — сфера, шар) — оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности, а также совокупность её свойств как планеты, где создаются условия для развития биологических систем; глобальная экосистема Земли.

Описание

Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы и, как сказал В. И. Вернадский: «Человек становится могучей геологической силой».

Французский учёный-естествоиспытатель Жан Батист Ламарк в начале XIX в. впервые предложил концепцию биосферы, ещё не введя даже самого термина. Термин «биосфера» был предложен австрийским геологом и палеонтологом Эдуардом Зюссом в 1875 году.

Целостное учение о биосфере создал советский биогеохимик и философ В. И. Вернадский. Он впервые отвёл живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая их деятельность не только в настоящее время, но и в прошлом.

Существует и другое, более широкое определение: Биосфера — область распространения жизни на космическом теле. При том, что существование жизни на других космических объектах, помимо Земли пока неизвестно, считается, что биосфера может распространяться на них в более скрытых областях, например, в литосферных полостях или в подлёдных океанах. Так, например, рассматривается возможность существования жизни в океане Европы — спутника Юпитера.

Местоположение биосферы

Биосфера включает в себя верхние слои литосферы, в которых живут организмы, гидросферу и нижние слои атмосферы.

Границы биосферы

  • Верхняя граница в атмосфере: 15—20 км. Она определяется озоновым слоем, задерживающим коротковолновое ультрафиолетовое излучение, губительное для живых организмов.
  • Нижняя граница в литосфере: 3,5—7,5 км. Она определяется температурой перехода воды в пар и температурой денатурации белков, однако в основном распространение живых организмов ограничивается вглубь несколькими метрами.
  • Граница между атмосферой и литосферой в гидросфере: 10—11 км. Определяется дном Мирового Океана, включая донные отложения.

Состав биосферы

Структура биосферы:

  1. Живое вещество — вся совокупность тел живых организмов, населяющих Землю, физико-химически едина, вне зависимости от их систематической принадлежности. Масса живого вещества сравнительно мала и оценивается величиной 2,4…3,6⋅1012 т (в сухом весе) и составляет менее одной миллионной части всей биосферы (ок. 3⋅1018 т), которая, в свою очередь, представляет собой менее одной тысячной массы Земли. Но это одна «из самых могущественных геохимических сил нашей планеты», поскольку живые организмы не просто населяют земную кору, а преобразуют облик Земли. Живые организмы населяют земную поверхность очень неравномерно. Их распространение зависит от географической широты.
  2. Биогенное вещество — вещество, создаваемое и перерабатываемое живым организмом. На протяжении органической эволюции живые организмы тысячекратно пропустили через свои органы, ткани, клетки, кровь большую часть атмосферы, весь объём мирового океана, огромную массу минеральных веществ. Эту геологическую роль живого вещества можно представить себе по месторождениям угля, нефти, карбонатных пород и т. д.
  3. Косное вещество — продукты, образующиеся без участия живых организмов.
  4. Биокосное вещество — вещество, которое создаётся одновременно живыми организмами и косными процессами, представляя динамически равновесные системы тех и других. Таковы почва, ил, кора выветривания и т. д. Организмы в них играют ведущую роль.
  5. Вещество, находящееся в радиоактивном распаде.
  6. Рассеянные атомы, непрерывно создающиеся из всякого рода земного вещества под влиянием космических излучений.
  7. Вещество космического происхождения.

Слои биосферы

Весь слой воздействия жизни на неживую природу называется мегабиосферой, а вместе с артебиосферой — пространством человеческой экспансии в околоземном пространстве — панбиосферой.

Атмосфера

Субстратом для жизни в атмосфере микроорганизмов (аэробионтов) служат водные капельки — атмосферная влага, источником энергии — солнечная энергия и аэрозоли. Примерно от верхушек деревьев до высоты наиболее частого расположения кучевых облаков простирается тропобиосфера (с тропобионтами; это пространство — более тонкий слой, чем тропосфера). Выше простирается слой крайне разреженной микробиоты — альтобиосфера (с альтобионтами). Выше простирается пространство, куда организмы проникают случайно и не часто и не размножаются — парабиосфера. Выше расположена апобиосфера.

Геосфера

Геобиосферу населяют геобионты, субстратом, а отчасти и средой жизни для которых служит земная твердь. Геобиосфера состоит из области жизни на поверхности суши — террабиосферы (с террабионтами), разделяемой на фитосферу (от поверхности земли до верхушек деревьев) и педосферу (почвы и подпочвы; иногда сюда включают всю кору выветривания) и жизнь в глубинах Земли — литобиосферу (с литобионтами, живущими в порах горных пород, главным образом в подземных водах). На больших высотах в горах, где уже невозможна жизнь высших растений, расположена высотная часть террабиосферы — эоловая зона (с эолобионтами). Литобиосфера распадается на слой, где возможна жизнь аэробов — гипотеррабиосферу, и слой, где возможно лишь обитание анаэробов — теллуробиосферу. Жизнь в неактивной форме может проникать глубже — в гипобиосферу. Метабиосфера — все биогенные и биокосные породы. Глубже расположена абиосфера.

Гидросфера

Гидробиосфера — весь глобальный слой воды (без подземных вод), населённый гидробионтами — распадается на слой континентальных вод — аквабиосферу (с аквабионтами) и область морей и океанов — маринобиосферу (с маринобионтами). Выделяют 3 слоя — относительно ярко освещённую фотосферу, всегда очень сумеречную дисфотосферу (до 1 % солнечной инсоляции) и слой абсолютной темноты — афотосферу.

Между верхней границей гипобиосферы и нижней границей парабиосферы лежит собственно биосфера — эубиосфера.

История развития биосферы

Развитие наблюдается лишь в живом веществе и связанным с ним биокосном. В косном веществе нашей планеты эволюционный процесс не проявляется.

Зарождение жизни

Жизнь на Земле зародилась ещё в архее — примерно 3,5 млрд лет назад в гидросфере. Такой возраст имеют найденные палеонтологами древнейшие органические остатки. Возраст Земли как самостоятельной планеты Солнечной системы оценивается в 4,5 млрд лет. Таким образом, можно считать, что жизнь зародилась ещё в юношескую стадию жизни планеты. В архее появляются первые эукариоты — одноклеточные водоросли и простейшие организмы. Начался процесс почвообразования на суше. В конце архея появился половой процесс и многоклеточность у животных организмов.

Будущее биосферы

С течением времени биосфера становится всё более неустойчивой. Существует несколько трагичных для человечества преждевременных изменений состояния биосферы, некоторые из них связаны с деятельностью человечества.

Некоторые философы, например, Дэвид Пирс, выступают за модификацию биосферы с целью избавления от страданий всех живых существ и создание в буквальном смысле рая на Земле (см. одно из значений слова аболиционизм).

История исследований биосферы

Большой вклад в развитие учения о биосфере внёс В. И. Вернадский. Впервые термин биосфера был введён Эдуардом Зюссом в 1875 году.

Н. А. Солнцев в ландшафтоведении различал фитосферу и зоосферу.

Искусственная биосфера

Биосфера — открытая система. Человек не может существовать вне биосферы, однако стремится исследовать космическое пространство. Ещё К. Э. Циолковский связывал освоение космоса с созданием искусственной биосферы.

В настоящее время идея её создания вновь становится актуальной в связи с планами освоения Луны и Марса. Однако на данный момент попытка создания полностью автономной искусственной биосферы не увенчалась успехом.

Рассматривается возможность создания (пока в далёком будущем) внеземной биосферы на других планетах при помощи терраформирования.

Примечания

  1. 1 2 Вернадский В. И. Несколько слов о ноосфере // Успехи современной биологии. — 1944 г., № 18, стр. 113—120.
  2. Вернадский В. И. Химическое строение биосферы Земли и её окружения — М.: Наука, 2001 г.
  3. Андрей Журавлев. Кто горы наворотил? // Популярная механика. — 2019. — № 11. — С. 94-99.
  4. Структура биосферы // Наука и жизнь. — 1987. — № 10. — С. 32. — ISSN 0028-1263.
  5. Моисеев, 1988, с. 48—111.
  6. К. Э. Циолковский. Космическая философия. Сборник. — М.: ИДЛи, 2004.

Литература

В Викисловаре есть статья «биосфера»

  • Моисеев Н.Н. Экология человечества глазами математика. — М.: Молодая гвардия, 1988. — 254 с. — ISBN 5-235-00061-7.

Ссылки

    Словари и энциклопедии

    Нормативный контроль

    GND: 4140407-5

    Биосфера – место обитания живых существ. Зарождение жизни тесно связано с развитием оболочек земли. Она начала свое формирование около 4 миллиардов лет назад, затем появились первые признаки жизни на нашей планете.

    Становление биосферы и ее поэтапное формирование обусловлено влиянием ряда факторов: действием на Землю космической энергии, развитием живых организмов и человечества.

    Термин биосфера ввел австрийский ученый Зюсс еще в 19 столетии, он выделил все оболочки Земли, но подробное их описание совершил в 20 ст. отечественный ученый В.И. Вернадский (первый президент Украинской Академии Наук). Он описал границы биосферы, разработал единое учение о биосфере.

    Свойства биосферы необходимые для возникновения и продолжения жизни

    • Наличие CO2 и кислорода;
    • вода – источник жизни на земле, присутствие, как пресных водоемов, так и соленых;
    • регуляция температуры: отсутствие резких перепадов, сверхвысоких и низких показателей;
    • обеспечение всего живого продуктами питания;

    До сих пор нет единого определения. Существует три версии, что такое биосфера:

  1. Общая масса всех живых существ, которые обитают в оболочках земли, является биосферой.
  2. Организмы и места их жизнедеятельности вместе составляют биосферу.
  3. Это следствие продолжительной жизни существ, обитавших задолго до наших дней.

Ученые-геологи считают правильной первую точку зрения, так как другие не имеют теоретического подкрепления.

Биосфера простилается по всей поверхности Земли (горы, поля, реки, моря, океаны) и создает условия для жизнедеятельности всех организмов. Человек также является составляющим звеном.

Границы

Границы биосферы в км

Чем определяются границы распространения биосферы?

Поскольку Живое — главная составляющая биосферы, ее границы определяются возможностью выживать отдельных индивидуумов в условиях окружающей среды. В верхних слоях ультрафиолетовое излечение не дает развиваться живым организмам – это определяет верхнюю границу биосферы. Высокие температуры в земных глубинах устанавливают нижнюю черту жизни.

Где проходят границы биосферы?

Атмосфера – воздушный слой земного шара, состоит из азота, кислорода, диоксида углерода и др. Она защищает Землю от перегрева, действия космической радиации, ультрафиолета, метеоритов. В составе атмосферы выделяют: тропосферу, стратосферу, ионосферу.

Тропосфера (озоновый слой земли) является верхней границей биосферы, находится на высоте 20 км.

Стратосфера – располагается на высоте 50 км над уровнем моря, воздух разжижается, нагревается, увеличивается концентрация озона, условия становятся непригодными для жизни.

Ионосфера – поверхностный слой атмосферы, поддается воздействию космического излучения, поэтому сильно ионизированный.

Литосфера – земная кора, твердый слой, который уходит на глубину 200км. К биосфере относится верхний шар, населенный живыми организмами. Нижняя граница по литосфере достигает 4км, глубина где были найдены бактерии. Опускаясь ниже, температура возрастает, достигая 100 градусов, что несовместимо с существованием живых организмов, происходит денатурация белка, все живое – гибнет.

Гидросфера – совокупность наземных и подземных вод. Это одна из оболочек нашей планеты, которая окружает материки и острова, составляет 70% поверхности земного шара. Нижняя граница биосферы расположена на глубине около 11 км. (в области Тихого океана).

Схема границ биосферы

Слои биосферы

Эубиосфера – основная прослойка биосфера. 99,9% живых существ постоянно населяют данный слой. Ширина эубиосферы 12-17км.

Парабиосфера, метабиосфера – соответственно верхний и нижний слои бисоферы, куда жизнь попадет случайно, заносится из эубиосферы.

Апобиосфера и абиосфера — самый верхний и самый нижний слои, куда жизнь не может попасть даже случайно.

В зависимости от среды обитания живых организмов выделяют:

  • Аэробиосферу (жизнь осуществляется за счет атмосферной влаги и солнечной энергии, от верхушек деревьев до стратосферы);
  • геобиосферу (организмы населяют почву, поверхность суши, деревья);
  • гидробиосферу (все водные структуры заселенные гидробионтами, исключая подземные воды).

Структура биосферы и ее состав

Живое вещество Вернадский описывал как общее число всех живых организмов населяющих планету в данный период времени.

Основные свойства:

  • В нем сосредоточено огромное количество энергии;
  • скорость течения реакций в живом организме быстрее, чем в искусственно созданных условиях;
  • составляющие живого вещества стабильны только в жизнеспособном организме;
  • возможность существовать в разных условиях, заполняя все пространство. Это явление Вернадский назвал «всюдностью жизни»;
  • отдельные особи всегда являются частью экосистемы;
  • живое вещество эволюционирует, приобретает новые свойства, адаптируется к изменчивости внешней среды.

Биогенное вещество – продукты жизнедеятельности живого. В процессе жизни организмы пропускают через себя многократно все составляющие биосферы, так образуются залежи нефти, газа, угля, торфа и др.

Косное вещество – формируется без участия живой материи (небиогенные горные породы, минералы).

Биокосное вещество – создается при взаимодействии живого и неживого (вода, приземная атмосфера, почва).

Структура и состав биосферы

Живое вещество распределено не равномерно на просторах земли, ее концентрация увеличивается возле экваториальной плоскости, на полюсах планеты жизни мало.

Скопление живых организмов находятся на границах слоев биосферы: на дне океана – проходит граница между литосферой и гидросферой, в поверхностных водах Мирового океана – рубеж между гидросферой и атмосферой, на границе литосферы и атмосферы находится почва – место обитания микроорганизмов, насекомых, других животных. В этих местах создаются благоприятные условия для существования: высокая концентрация кислорода, доступ к солнечному свету, влага, питательные вещества.

Соотношение видов живых организмов показывает преобладание растительности, она занимает 99% от всего живого, животные – 1%, люди – 0,0002%.

Функции биосферы

Энергетическая – аккумуляция солнечного излучения в процессе фотосинтеза (переход энергии солнечного света с помощью пигментов растений в органические связи) и ее трансформация, с последующим распределением между всеми живыми организмами.

Газообразующая – поддержание стабильного газового состава атмосферы (выделение кислорода, поглощение диоксида углерода).

Концетрационная – сосредотачивают в теле химические вещества, образуя в дальнейшем полезные ископаемые.

Круговорот вещества в биосфере

Растения в процессе роста и развития используют минеральные вещества из почвы, адсорбируют воду с помощью корня, перерабатывают энергию Солнца, образуют органические вещества из неорганических, из атмосферного воздуха листьями поглощается диоксид углерода и выделяется кислород посредством фотосинтеза.

Животные и человек дышат кислородом, используют органические вещества образованные растениями. После смерти, скопление органических веществ растений и животных разлагается под действием микроорганизмов, и переходят в неорганическое состояние.

Процесс преобразования энергии и вещества начинается сначала – это и есть жизненный круговорот.

Оцените, пожалуйста, статью. Мы старались:)

Биосферология

Биосфера Земли существует с момента зарождения жизни. В течение этого длительного времени вследствие воздействия космических и земных факторов непрерывно менялось абиотичне окружающей среды, которое непрерывно “диктовало” изменения морфологической и функциональной строения живых организмов до их современных форм. В то же время изменения окружающей среды почти не вызвали морфологических и физиологических изменений представителей таких царств, как вирусы и дробьянкы, которых считают вечными видами. Наука, в частности генетика, предстоит выяснить, почему на эти организмы не повлияли те катаклизмы, происходившие на нашей планете.

Сферу существования современных живых организмов и их отмерших предков, охватывает верхнюю толщу литосферы, гидросферу и нижнюю часть атмосферы тропосферу, называют биосферой. Биосфера является объектом исследования многих наук – биологии, геологии, географии и др. В последнее время на стыке этих наук возникло новое научное направление -биосферология, то есть наука о биосфере.

Биосферологии, по мнению академика М. Будыко (1984), призвана решать целый ряд научных проблем. Главные из них:

  • • изучать составляющие биосферы с целью их детального количественного описания. Это же касается всех регионов земного шара;
  • • изучать круговорот главных видов минеральных, органических веществ и энергии для различных географических областей и биосферы в целом;
  • • строить числовые модели для каждого компонента биосферы. Такие модели будут фундаментом для обоснования комплексной числовой модели всей биосферы;
  • • получать эмпирические материалы, характеризующие состояние биосферы в геологическом прошлом с целью выяснения закономерностей эволюции биосферы;
  • • применять числовые модели для прогнозирования антропогенных изменений биосферы, а также прогнозировать ее изменения в результате действия природных факторов для обоснования оптимальных путей хозяйствования;
  • • рассматривать методы воздействия на крупномасштабные процессы в биосфере с целью создания глобальной системы регулирования в интересах мирового сообщества.

Конечно, эти проблемы не исчерпывают всего многообразия задач, которые стоят перед биосферологии. Однако положительное решение хотя бы нескольких из них позволит уменьшить негативное антропический влияние на биосферу, является актуальной задачей современной науки.

Истоки биосферологии стоит искать среди ученик китайских философов (конфуцианство) и индийских жрецов (брахманизм), берущие начало в первом тысячелетии до рождения Христа. Эти учения проповедовали гармонию человека с Космосом, связывали жизнедеятельность человека с внешним миром. Большое внимание взаимоотношениям человека и Вселенной уделяли и древнегреческие ученые.

Христианское учение основывается на догмах о временности земного и вечность посмертной жизни, в частности, человеческой души и зависит от поведения и веры в Бога-человека. Этим учением длительное время отрицали влияние Космоса на человеческий организм. Итальянский поэт и философ Д. Бруно (1548-1600) отверг прежние представления о христианское мировоззрение и высказал мнение “о бесконечности природы и бесконечное количество миров в Космосе”. Он утверждал “о едином начале” и “мировую душу”, которые стали двигателями Вселенной поддержал гелиоцентрическую систему Н. Коперника и учение о все общую одухотворенность материи (гилозоизм – греч. ЬХц – вещество и жизнь), за что был публично казнен.

Согласно взглядам другого итальянского ученого Г. Галилея (15641642) “мир бесконечен, то есть ничто в нем не возникает и не исчезает”. Ученые последующих поколений Кант, Лаплас, Г. Гегель утвердили идею о вечности материи и движения.

Следующим шагом по познания биосферы была мысль французского врача Ф. Возраст где Азиру (1748-1794), который утверждал, что “жизнь охватывает внешнюю оболочку Земли и находится во взаимодействии с природной средой”. Развитие этой мысли прослеживается в трудах многих естествоиспытателей XIX в. (Ж. Ламарк, А. Гумбольдт, Ж. Кювье, Ч. Дарвин, А. Уоллес), которые обосновали идею взаимодействия живой и неживой материи и подвели к необходимости выделения специфической оболочки Земли, в которой сосредоточена жизнь. Эту оболочку австрийский гидрогеолог Э.Зюсс (1831-1914) 1875 назвал биосферой, понимая под ней “ограниченную во времени и пространстве совокупность организмов на поверхности Земли”.

Учение о биосфере тесно связано с именем выдающегося ученого, первого президента Всеукраинской академии наук В. Сен-Вернадского. Под биосферой он понимал “приземный пространство жизни организмов, который охватывает нижнюю часть атмосферы, всю гидросферу и верхнюю часть литосферы”. В этом смысле учение о биосфере совпадает с понятием “географической оболочки”. В. Вернадский рассматривал биосферу и жизнь как неразрывное единство живой и неживой вещества. По этому поводу он писал, что “живые организмы являются функцией биосферы и теснейшим образом материально и энергетически с ней связаны”.

Изучая роль живых организмов в геологическом процессе, в частности в выветривании горных пород, В. Вернадский в своих трудах “История минералов земной коры” (1923-1933), “Биосфера” (1926), “Химическое строение биосферы Земли и ее окружающей среды” (1965 ) изложил главные выводы учения о биосфере:

  • • живое вещество нельзя рассматривать в отрыве от биосферы, геологической функцией которой она является. Живое вещество или его следы имеются в осадочных и метаморфизированных горных породах, природных водах и атмосферном воздухе. Современные компоненты биосферы является “продуктом” жизнедеятельности организмов;
  • • биосферу следует рассматривать как оболочку преобразования космической энергии всех небесных тел и, прежде всего, солнечного излучения;
  • • биосфера является планетарным явлением космического характера.

ПОДІЛИТИСЯ:

Экология: биология взаимодействия. 2.01. Биосфера

Українська / Русский

1.14. (дополнение) В чем искать причины особенностей биосистем?

Д. Шабанов, М. Кравченко. Экология: биология взаимодействия

Глава 2. Биосферология

2.02. Ноосфера

Глава 2. Биосферология

Слово «биосфера» является одним из самых употребительных в современной науке. Как с этим соотносится то, что оно употребляется в разных смыслах?

Общепризнано, что создателем биосферологии является Владимир Иванович Вернадский. Этим ученым гордятся и Украина, и Россия; родился и умер он в России, часть жизни провел в Украине и в свое время стал первым президентом Украинской академии наук, созданной при гетьмане Скоропадском. Кстати, в течение определенной части своего детства Владимир Вернадский обучался в классической гимназии в Харькове.

Понятие «биосфера» принадлежит не Вернадскому. Его ввел в широкий научный оборот в 1875 году австрийский геолог Эдуард Зюсс, в работе, посвященной геологии Альп. Для Зюсса биосфера — земная оболочка, занятая жизнью. Но и Зюсс не был первым, кто создал это понятие. Впервые его употребил великий французский зоолог Жан Батист Ламарк в 1803 году для обозначения совокупности живых организмов планеты.

Вернадский, в общем, определял биосферу в смысле, предложенном Зюссом, хотя, на самом деле, существенно переосмыслил его. Для совокупности живых организмов Земли (биосферы по Ламарку) Вернадский использовал понятие «живое вещество».

Исследователи наследия Вернадского подчеркивают, что в его текстах смешаны трактовки биосферы, как зоны распространения организмов (у Вернадского есть понятие «поля существования жизни»), и биосферы, как преобразованной жизнью земной оболочки. Очевидно, что второй, функциональный, подход — существенно богаче и перспективнее. Здесь мы будем использовать именно его (рис. 2.1.1). Итак, биосфера — оболочка Земли, преобразуемая деятельностью живых организмов. Альтернативная трактовка (биосфера как оболочка Земли, в пределах которой встречаются живые организмы), оказывается намного менее полезной.

Рис. 2.1.1. Во избежание неверного понимания следует прежде всего договориться о смысле, который вкладывается в используемые термины. Как это соотносится с основной мыслью эпиграфа к пункту 1.1? Выбор наиболее осмысленных трактовок нечетких понятий и их использование только после того, как определен смысл, в котором они применяются, — неотъемлемая часть «исправления имен»

«Вернадский … называл биосферой наружные оболочки Земли, охваченные жизнью, и акцентировал прежде всего работу собственно «живого вещества» (как он в противоположность косному веществу планеты называл совокупность организмов). Кроме того, в начале XX века еще очень мало было известно о глубоких недрах Земли и верхних слоях атмосферы. Поэтому в своих лекциях и книге «Биосфера» (1926) Вернадский занизил мощность биосферы. В более поздних работах он постоянно раздвигал границы биосферы, медленно, но верно превращая ее из области, охваченной жизнью, в область проявления последствий ее геохимической работы, источником которой является энергия солнечных лучей.

Эти области существенно различаются благодаря глобальному геохимическому круговороту, который Вернадский называл главной функцией биосферы. Большая часть энергии, движущей круговорот, расходуется на перенос косного вещества, прежде всего на чисто физический процесс испарения и конденсации воды. Благодаря работе круговорота продукты жизнедеятельности, особенно газообразные, жидкие и растворимые, разносятся гораздо шире зоны, непосредственно охваченной активной жизнью.

Таким образом, для Вернадского биосфера — прежде всего естественно-историческое, а именно — геологическое тело, наружная оболочка планеты, в свою очередь состоящая из нескольких геосфер: тропосферы с нижней частью стратосферы, жидкой гидросферы и значительной части земной коры, включая ее гранитно-метаморфический слой. Последнюю Вернадский называл областью «былых биосфер», подчеркивая этой метафорой непрерывность существования биосферы во времени» (А.С. Раутиан, 2001).

«Живое вещество» — совокупность всех живых организмов, рассматриваемая как единое целое. Поле существования живого вещества охватывает всю гидросферу, верхние слои литосферы и нижнюю часть атмосферы, но основная концентрация живых организмов отмечается в приповерхностном слое суши и океана. Если живое вещество распределить по поверхности Земли равномерно, образуется пленка толщиной в 2 см. Среднее время обновления живого вещества — 8 лет (а в океане — 33 дня).

Но каким образом живое вешество может преобразовать целую планету? Благодаря своей активности. Геохимические функции живого вещества (по В. И. Вернадскому, с некоторыми изменениями), таковы:

— энергетическая: аккумуляция солнечной энергии растениями в результате фотосинтеза с дальнейшим перераспределением этой энергии;

— концентрационная: избирательное накопление определенных элементов в теле самих организмов и образуемых при их участии осадочных пород;

— деструктивная: минерализация органики, разложение горных пород, вовлечение элементов в круговорот;

— средообразовательная: трансформация параметров среды в благоприятные для организмов (почвообразование, поддержание газового состава атмосферы, очищение водоемов и прочее);

— транспортная: перемещение входящих в состав живого вещества элементов и перераспределение его по поверхности планеты (пример: вынос биогенов из водоемов рыбоядными птицами и животными, имеющими водную личиночную и наземно-воздушную взрослую стадии).

Основными результатами биогеохимической активности живого вещества можно считать кислородную революцию около 2,5 миллиардов лет назад; формирование устойчивых границ между сушей и водоемами (преобразование плащевого стока воды с континентов в русловой); создание почвы; регуляцию образования геологических осадков.

Литература / Курс лекций общее землеведение / 11. Биосфера. Ландшафт

ЛЕКЦИЯ 11

БИОСФЕРА. ПОНЯТИЕ О ГЕОГРАФИЧЕСКОМ ЛАНДШАФТЕ.

Учение В.И. Вернадского о биосфере. Биосфера, ее границы, состав. Биостром. Биологический круговорот. Понятие о географическом ландшафте. Природные и антропогенные ландшафты.

Биосфера – оболочка планеты, населенная живым веществом. Живое вещество одно из самых древних известных на Земле природных тел. В химическом строении биосферы главная роль принадлежит кислороду, углероду и водороду, составляющим по весу 96,5% живого вещества, а также азоту, фосфору и сере, которые называются биофильными.

Понятие биосферы появилось в биологии в 18 в., однако первоначально оно имело совсем иной смысл, чем теперь. Биосферой именовали небольшие гипотетические глобулы (ядра органического вещества), которые якобы составляют основу всех организмов. К середине 19 ст., в биологии уточняются позиции научных представлений о реальных органических клетках, и термин «биосфера» утрачивает свой прежний смысл. К идее биосферы в ее современной трактовке пришел Ж.-Б. Ламарк (1744-1829), основатель первой целостной концепции эволюции живой природы, однако данный термин он не использовал. Впервые в близком к современному смысле понятие «биосфера» ввел австрийский геолог Э. Зюсс, который в книге «Происхождение Альп» (1875) определил ее как особую, образуемую организмами оболочку Земли. В настоящее время для обозначения этой оболочки используются понятия «биота», «биос», «живое вещество», а понятие «биосфера» трактуется так, как его толковал академик В.И. Вернадский (1863-1945). Основной труд В.И. Вернадского «Химическое строение биосферы Земли и ее окружения» был опубликован после его смерти.

Целостное учение о биосфере представлено в его ставшей классической работе «Биосфера» (1926). В.И. Вернадский определил биосферу как особую охваченную жизнью оболочку Земли. В физико-химическом составе биосферы В.И. Вернадский выделяет следующие компоненты:

-живое вещество – совокупность всех живых организмов;

-косное вещество – неживые тела или явления (газы атмосферы, горные породы магматического, неорганического происхождения и т.п.);

-биокосное вещество – разнородные природные тела (почвы, поверхностные воды и т.д.);

-биогенное вещество – продукты жизнедеятельности живых организмов (гумус почвы, каменный уголь, торф, нефть, сланцы и т.п.);

-радиоактивное вещество (образуется в результате распада радиоактивных элементов радия, урана, тория и т. д.);

-рассеянные атомы (химические элементы, находящиеся в земной коре в рассеянном состоянии);

-вещество органического происхождения (космическая пыль метеориты).

Учение В.И. Вернадского нацеливало на изучение живых, косных и биокосных тел в их неразрывном единстве, что сыграло значительную роль в подготовке естествоиспытателей к целостному восприятию природных систем.

С учетом современных представлений, биосфера включает оболочку Земли, которая содержит всю совокупность живых организмов и часть вещества планеты, находящуюся в непрерывном обмене с этими организмами. Иными словами биосфера – это область активной жизни, которая охватывает нижнюю часть атмосферы, всю гидросферу и верхние горизонты литосферы.

Структура биосферы представляет собой совокупность газообразной, водной и твердой оболочек планеты и живого вещества, их населяющего. Масса биосферы составляет приблизительно 0,05% массы Земли, а ее объем – 0,4% объема планеты. Границы биосферы определяет распространение в ней живых организмов. Несмотря на различную концентрацию и разнообразие живого вещества в разных районах земного шара, считается, что горизонтальных границ биосфера не имеет. Верхняя же вертикальная граница существования жизни обусловлена не столько низкими температурами, сколько губительным действием ультрафиолетовой радиации и космического излучения солнечного и галактического происхождения, от которого живое вещество планеты защищено озоновым экраном. Максимальная концентрация молекул озона (трехатомного кислорода) приходится на высоту 20-25 км, где толщина озонового слоя составляет 2,5-3 км. Озон интенсивно поглощает радиацию на участке солнечного спектра с длиной волны менее 0,29 мкм.

Поскольку граница биосферы обусловлена полем существования жизни, где возможно размножение, то она совпадает с границей тропосферы (нижнего слоя атмосферы), высота которой от 8 км над полюсами до 18 км над экватором Земли. Однако в тропосфере происходит лишь перемещение живых организмов, а весь цикл своего развития, включая размножение, они осуществляют в литосфере, гидросфере и на границе этих сред с атмосферой (только споры и бактерии заносятся на высоту до 20 км, в толще литосферы на глубине 4,5 км в скважинах найдены только анаэробные бактерии).

В состав биосферы полностью входит вся гидросфера (океаны, моря, озера, реки, подземные воды, ледники), мощность которой составляет 11 км. Наибольшая концентрация жизни сосредоточена до глубины 200 м, в так называемой эвфотической зоне, куда проникает солнечный свет и возможен фотосинтез. Глубже начинается дисфотическая зона, где царит темнота и отсутствуют фотосинтезирующие растения, но активно перемещаются представители животного мира, непрерывным потоком опускаются на дно отмершие растения и останки животных.

Нижняя граница биосферы в пределах литосферы лежит в среднем на глубине 3 км от поверхности суши и 0,5 км ниже дна океана (верхний слой земной коры с давлением 4 х 107Па и температурой 1000С).

Возникновение жизни и биосферы представляет собой крупнейшую проблему современного естествознания. Можно говорить о двух гипотезах – о возникновении (самозарождении) жизни и о появлении жизни из космоса.

Согласно первой гипотезе о самозарождении жизни на Земле на поверхности безжизненной планеты происходил медленный абиогенный синтез органических веществ, которые образовались из вулканических газов при разрядах молний. Примитивные организмы сформировались из белковых структур в конце раннего архея, около 3 млрд. лет назад. Первые одноклеточные организмы, способные к фотосинтезу, возникли около 2,7 млрд. лет назад, а первые многоклеточные – не менее чем на 1 млрд. лет позже. В условиях отсутствия озонового экрана жизнь могла развиваться только в прибрежных частях морей и внутренних водоемах, на дно которых проникал солнечный свет. Из органических соединений возникали многомолекулярные системы, взаимодействующие со средой, благодаря эволюции они приобретали свойства живых организмов.

Сейчас на первое место вышла космохимическая гипотеза происхождения жизни в пределах Солнечной системы (теория панспермии). Есть данные, свидетельствующие о том, что жизнь существовала на Земле намного раньше, чем 3 млрд. лет (по А.И. Опарину). Наиболее древним участком земной коры является комплекс Исуа в Западной Гренландии, возраст которого не менее 3,8 млрд. лет. В горных породах Исуа обнаружены явные следы геохимического характера, указывающие на присутствие биосферы с фотоавтотрофными организмами, следовательно, на существование жизни в это время. Однако автотрофным организмам должны предшествовать гетеротрофные, как более примитивные, поэтому начало жизни отодвигается за пределы даты в 4 млрд. лет, т.е., возможно, что жизнь на Земле существует столько же времени, сколько и сама планета. Получены данные, указывающие на существование жизни в космических условиях – обнаружены органические соединения в метеоритах и осколках астероидов, исследованиями подтверждено их биогенное происхождение.. вероятно, образование органических соединений в Солнечной системе на ранних стадиях ее эволюции было типичным и массовым явлением.

Длительное время жизнь размещалась по планете «пятнами», «пленка жизни» была прерывистой. Широкому и быстрому распространению жизни на Земле способствовали удивительная приспособляемость организмов к среде, разнообразие видов и поразительные потенциальные возможности размножения. Разнообразие видов живых организмов обеспечило заполнение всех экологических ниш. Микроорганизмы найдены в промерзающих почвах и в воде с температурой 1000С, они переносят большую концентрацию кислот, существуют в щелочной среде, микроорганизмы найдены в теплоносителях атомных реакторов.

Биостром. На границе атмо-, гидро- и литосферы сконцентрирована наибольшая масса живого вещества планеты, и эта земная оболочка названа биостромом (биогеосферой), или пленкой жизни. Только в ее пределах возможны жизнедеятельность и существование человека. Синонимами биогеосферы являются «эпигенема» (Р.И. Аболин), «витасфера» — сфера жизни (А.Н. Тюрюканов и В.Д. Александров), «биостром», «фитогеосфера» (Е.М. Лавренко), «фитосфера» (В.Б. Сочава), «биогеоценотический покров» (В.Н. Сукачев) и другие близкие по содержанию термины.

В структурном отношении биостром слагается из фитострома, зоострома и микробиострома. Зоостром в создании органического вещества не участвует. Роль микробиостврома в этом процессе невелика и осуществляется с помощью некоторых, в основном водных, фотосинтезирующих бактерий, хемосинтезирующих бактерий (растущих за счет химического окисления неорганического вещества) и сероводородоокисляющих бактерий (обитают в гидротермальных источниках или вблизи их на разных глубинах Океана, включая абиссаль). Основным продуцентом, создателем первичного органического вещества, был и остается фитостром. Он создает его в процессе фотосинтеза в дневные часы, закрепляя в себе в форме потенциальной энергии пищи часть энергии солнечного света.

В.И. Вернадский выделил две формы концентрации живого вещества: жизненные пленки и сгущения жизни. Жизненные пленки, занимающие огромные пространства, приурочены к границам раздела фаз. В частности, отличительной особенностью океанического биострома является наличие в нем двух пленок жизни: водно-поверхностной (эвфотической или планктонной) и донной. Планктонная пленка приурочена к эвфотической зоне Мирового океана, границе соприкосновения атмосферы и гидросферы, где с помощью фтосинтеза фитопланктон создает органическое вещество – пищу для подавляющей части организмов на всех глубинах океана. Донная пленка жизни занимает дно (бенталь) океана (заселен бентосом), находится на разделе жидкой и твердой фаз вещества. Водно-поверхностный и донный слои биострома вблизи берегов, на мелководье, смыкаются, образуя здесь единый океанический биостром, отличающийся в равной мере богатым и разнообразным планктоном и бентосом.

На суше существуют две пленки жизни – наземная и почвенная. Наземная пленка (наземный биостром) находится на поверхности почвы и полностью включает растительный покров (фитостром) и животное население суши (зоостром и микробиостром). Почвенная пленка приурочена к тонкому поверхностному слою литосферы, преобразованному почвообразующими процессами. С позиций анализа структурных частей ГО почва представляет верхний преобразованный биостромом слой современной коры выветривания. Она – вместилище подземной части биострома, место сосредоточения корневых систем и среда обитания богатой и разнообразной фауны – от крота и слепыша, до множества беспозвоночных и микроорганизмов. На суше пленки жизни имеют непосредственный контакт, и резкой границы между ними не существует.

Живое вещество в биосфере распределено неравномерно не только по вертикали, но и по площади, образуя сгущения жизни. На суше такими сгущениями жизни являются леса, болота, поймы рек и озера; в океане выделяют следующие типы сгущения жизни: прибрежное (возникает там, где перекрываются планктонная и донная пленки жизни – побережье, шельф и эстуарии рек); саргассовое (приурочено к участкам океана, занятым бурой водорослью саргассум); рифтовое (массовое мелководное поселение коралловых полипов и других морских организмов с твердым известняковым скелетом – Большой Барьерный риф в Тихом океане); апвеллинговое (образовано там, где ветры отгоняют теплую поверхностную воду от берегового склона в субтропических и тропических широтах, в результате чего на поверхность поднимается холодная глубинная вода, богатая биогенными элементами; чаще всего наблюдается у западных берегов континентов); абиссальное рифтовое (оазисы небольших размеров в глубоководных желобах и вне их, населенные рифтиями, полихетами, двухстворчатыми моллюсками, слепыми крабами и рыбами при полном отсутствии растений – открыто к северо-востоку от Галапагосских островов, на глубине 2450 м).

Функции живого вещества в биосфере. Суммарная биомасса живого вещества биосферы составляет 2-3 трл. т, причем 98% ее – это биомасса наземных растений. Биосферу населяют около 1 500 000 видов животных и 500 000 (350 000 – растений и 1 700 000 – животных по Ф.Н. Мильков, 1990) видов растений (Г.В. Войткевич, В.А. Вронский, 1989). В процессах самоорганизации биосферы живое вещество играет ведущую роль и выполняет следующие функции:

-энергетическую – перераспределение солнечной энергии между компонентами биосферы;

-средообразующую (газовую) – в процессе жизнедеятельности живого вещества создаются основные газы: азот, кислород, углекислый газ, метан и др.; живые организмы участвуют в миграциях газов и их превращениях; делятся на кислородно-диоксидуглеродную, диоксидуглеродную, азотную, углеводородную, озонную и пероксидводородную),

-концентрационную – извлечение и накопление живыми организмами биогенных элементов (кислорода, углерода, водорода, азота, натрия, магния, калия, алюминия, серы и др.) в концентрациях, в сотни тысяч раз превышающих их содержание в окружающей среде (в углях содержание углерода больше, чем в среднем для земной коры; в кораллах концентрируются карбонаты, формируется органогенный известняк; в диатомовых водорослях концентрируется кремний, в водорослях ламинариях – йод);

-деструктивную (проявляется в минерализации органического вещества);

-окислительно-восстановительную (заключается в химическом превращении веществ биосферы);

— биохимическую (связана с жизнедеятельностью живых организмов – их питанием, дыханием, размножением, смертью и последующим разрушением тел; в результате происходит химическое превращение живого вещества сначала в биокосное, а затем, после отмирания, в косное)

-биогеохимическая деятельность человечества (приводит к видоизменению всей планеты).

Водная функция живого вещества в биосфере связана с биогенным круговоротом воды, имеющим важное значение в круговороте воды на планете.

Выполняя перечисленные функции, живое вещество адаптируется к окружающей среде и приспосабливает её к своим биологическим (а если речь идёт о человеке, то и социальным) потребностям. При этом живое вещество и среда его обитания развиваются как единое целое, однако контроль над состоянием среды осуществляют живые организмы.

Процесс создания органического вещества в биосфере происходит одновременно с противоположными процессами потребления и разложения его гетеротрофными организмами на исходные минеральные соединения (воду, углекислый газ и др.). Так осуществляется круговорот органического вещества в биосфере при участии всех населяющих ее организмов, получивший название малого, или биологического (биотического), круговорота веществ в отличие от вызываемого солнечной энергией большого, или геологического, круговорота, наиболее ярко проявляющегося в круговороте воды и циркуляции атмосферы. Большой круговорот происходит на протяжении всего геологического развития Земли и выражается в переносе воздушных масс, продуктов выветривания, воды, растворенных минеральных соединений, загрязняющих веществ, в том числе радиоактивных.

Малый (биологический) круговорот начинается с возникновения органического вещества в результате фотосинтеза зеленых растений, то есть образования живого вещества из углекислого газа, воды и простых минеральных соединений с использованием лучистой энергии Солнца. Фотосинтез осуществляется наземными растениями, пресноводными водорослями и океаническим фитопланктоном. Образовавшиеся в листе органические вещества перемещаются в стебли и корни, где уже в синтез включаются поступившие из почвы минеральные соединения – соли азота, серы, калия, кальция, фосфора. Растения (продуценты) извлекают из почвы в растворенном виде серу, фосфор, медь, цинк и другие элементы. Растительноядные животные (консументы первого порядка) поглощают соединения этих элементов в виде пищи растительного происхождения. Хищники (консументы второго порядка) питаются растительноядными животными, потребляя пищу более сложного состава, включая белки, жиры, аминокислоты и т.д. Останки животных и отмершие растения перерабатываются насекомыми, грибами, бактериями (редуцентами), превращаясь в минеральные и простейшие органические соединения, поступающие в почву и вновь потребляемые растениями. Так начинается новый виток биологического круговорота.

В отличие от большого круговорота малый имеет разную продолжительность: различают сезонные, годовые, многолетние и вековые малые круговороты. Биологические круговороты вещества не замкнуты. При отмирании органического вещества в почву возвращаются не только те элементы, которые из нее забирались, но и новые, образованные самим растением. Некоторые вещества надолго выходят из круговоротов, задерживаясь в почве или образуя осадочные горные породы.

Образование и разрушение органического вещества – противоположные, но неотделимые друг от друга процессы. Ускорение или отсутствие одного из них неизбежно приведет к исчезновению жизни. Если будет происходить только накопление органического вещества, то атмосфера вскоре лишится углекислого газа, литосфера – фосфора, серы, калия. Следовательно, фотосинтез прекратится, и растения погибнут. С другой стороны, если увеличится скорость разложения, все органическое вещество быстро разложится до минеральных соединений и жизнь прекратится.

Понятие биогеохимического цикла. Обмен веществом и энергией, осуществляющийся между различными структурными частями биосферы и определяющийся жизнедеятельностью микроорганизмов, называется биогеохимическим циклом. Именно с введением В.И. Вернадским понятия «биогеохимический цикл» перестало существовать представление о круговороте веществ как о замкнутой системе. Все биогеохимические циклы составляют современную динамическую основу существования жизни, взаимосвязаны друг с другом и каждый из них играет свойственную ему роль в эволюции биосферы.

Отдельные циклические процессы, слагающие общий круговорот веществ в биосфере, не являются полностью обратимыми. Одна часть веществ в повторяющихся процессах превращения и миграции рассеивается или связывается в новых системах, другая возвращается в круговорот, но уже с новыми качественными и количественными признаками. Часть веществ может также извлекаться из круговорота, перемещаясь вследствие физико-геологических процессов в нижние горизонты литосферы или рассеиваясь в космическом пространстве. Продолжительность циклов круговорота тех или иных веществ чрезвычайно различна. Время, достаточное для полного оборота углекислого газа атмосферы через фотосинтез, составляет около 300 лет, кислорода атмосферы тоже через фотосинтез – 2000 – 2500, воды через испарение – около 1 млн. лет.

В большом и малом круговоротах участвует множество химических элементов и их соединений, но важнейшими из них являются те, которые определяют современный этап развития биосферы, связанный с хозяйственной деятельностью человека. К ним относятся круговороты углерода, серы и азота (их оксиды – главнейшие загрязнители атмосферы), а также фосфора (фосфаты – главный загрязнитель вод суши). Большое значение имеют круговороты токсичных элементов – ртути (загрязнитель пищевых продуктов) и свинца (компонент бензина).

Вмешательство человека в природные круговороты приводит к серьезным изменениям в состоянии биосферы. Возвращаясь к учению В.И. Вернадского, необходимо отметить, что он оценил появление человека на Земле как огромный шаг в эволюции планеты. Ученый считал, что с возникновением человека и развитием его производственной деятельности человечество становится основным геологическим фактором всех происходящих в биосфере планеты изменений, приобретающих глобальный характер: «Человечество, взятое в целом, становится мощной геологической силой». Дальнейшее неконтролируемое развитие деятельности людей таит в себе большую опасность и потому, считал В.И. Вернадский, биосфера должна постепенно превращаться в ноосферу, или сферу разума (от греческих ноос – разум, сфериа – шар).

Основателями концепции ноосферы можно считать трех ученых – видного французского математика, антрополога и палеонтолога Э. Леруа (1870-1954), французского теолога, палеонтолога и философа П. Тейяра де Шардена (1881-1955) и выдающегося российского ученого естествоиспытателя В.И. Вернадского.

Под понятием «ноосфера» В.И. Вернадский подразумевал высшую форму развития биосферы, определяемую гармонично существующими процессами развития общества и природы. Учение Вернадского утверждает принцип совместной эволюции человечества и природной среды (сейчас этот процесс называют коэволюцией), нацеливает на поиск практических путей обеспечения общественно-природного равновесия.

Понятие «ноосфера» отражает будущее состояние рационально организованной природы, новый этап развития биосферы, эпоху ноосферы, когда дальнейшая эволюция планеты будет направляться разумом в целях обеспечения необходимой гармонии в сосуществовании природы и общества.

Качественные отличия ГО ноосферного этапа развития:

-оболочка характеризуется разнообразием вещественного состава, первичное вещество преобразовывается, возникают новые почвы, породы и минералы, культурные растения и животные;

-возрастает количество механически извлекаемого материала литосферы, оно уже превышает массу материала, выносимого речным стоком;

-происходит массовое потребление продуктов фотосинтеза прошлых геологических эпох, преимущественно в энергетических целях; в ноосфере начинается уменьшение содержания кислорода и увеличение углекислого газа, среднегодовая температура планеты увеличивается (примерно на 1-1,50), что обуславливает разогрев планеты;

-присутствуют различные виды энергий, используются ядерная и термоядерная энергия;

-в пределах ноосферы наблюдается тесное взаимодействие всех компонентов, приводящее к созданию новых систем: природно-территориальных и антропогенных;

-в ноосфере проявляется разумная деятельность человека, благодаря появлению разума возникает общество (совокупность индивидуумов, личностей, способных к совместному труду);

-ноосфера выходит за пределы биосферы в связи с огромным прогрессом НТР: появляется космонавтика, обеспечивающая выход человека за пределы планеты.

Таким образом, биосфера – развивающееся образование, причём в процессе его развития можно выделить следующие этапы:

  1. собственно биосфера (воздействие человека на природную среду не приобрело глобального масштаба);

  2. биотехносфера – биосфера сегодняшнего дня, результат длительного преобразующего влияния технически вооружённого человеческого общества на природу Земли;

  3. ноосфера – состояние биосферы, характеризующееся гармонией и единством природы и общества на основе позитивной и созидательной научной мысли.

Дифференциация ГО. Природный комплекс. Понятие о географическом ландшафте.

Дифференциация ГО – разделения единого планетарного комплекса на объективно существующие природные комплексы разного ранга. Дифференциация зависит от зональных и азональных причин.

Природный комплекс (ПК) – саморегулируемая и самовоспроизводимая система взаимосвязанных компонентов и комплексов более низкого ранга (определение Ф.Н. Милькова). Природные комплексы делятся на природно-территориальные (ПТК) и природно-аквальные (ПАК). Наиболее изучены ПТК суши. ПК характеризуется относительно однородным участком поверхности, единство которого обусловлено географическим положением, единой историей развития, происходящими в его пределах природными процессами.

Все ПК образованы взаимодействием компонентов: горные породы, вода, воздух, растения, животные, почвы. Роль компонентов в ПК учеными оценивается по-разному. Н.А. Солнцев отводит литогенной основе (комплекс геолого-геоморфологических особенностей изучаемой территории, включая стратиграфию, литологию горных пород, тектонику, рельеф) роль ведущего фактора в формировании и устойчивости ПК. Впервые мысль о равнозначности всех компонентов была высказана В.В. Докучаевым, применительно к почве. Ученый считал, что почва есть результат взаимной деятельности климата, растительности, животных, грунтов.

Ряд авторов выделяют полные и неполные ПК (Д.Л. Арманд): полные образуются всеми компонентами, в неполных отсутствуют один или два компонента.

ПК по своим размерам и сложности подразделяются на планетарные (ГО), региональные (материки, физико-географические страны и области, географические пояса и зоны), локальные (приурочены к мезо- и микроформам рельефа – оврагам, речным долинам, моренным холмам).

Основной единицей в ландшафтоведении предлагается считать ландшафт, т.е. такой полный ПТК, в структуре которого непосредственно участвуют все основные компоненты, начиная с земной коры и заканчивая животными, населяющими данный ПТК.

Термин «ландшафт имеет» международное признание. Он взят из немецкого языка (Land – земля и schaft – взаимосвязь).

В научную литературу термин ландшафт был введен в 1805 г. немецким ученым А. Гоммейером. Под ландшафтом он подразумевал совокупность обозреваемых из одной точки местностей, заключенных между ближайшими горами, лесами и другими частями земли. В нашей стране развитие ландшафтоведения связано с трудами выдающихся географов Л.С. Берга, А.А. Григорьева, С.В. Калесника, Ф.Н. Милькова и др.

Известны три трактовки географического ландшафта.

Ландшафт – территориально ограниченный участок земной поверхности, характеризующийся генетическим единством и тесной взаимосвязью слагающих его компонентов (А.А. Григорьев, Н.А. Солнцев. С.В. Калесник, А.Г. Исаченко).

Ландшафт – обобщенное типологическое понятие физико-географических комплексов. Эта точка зрения развивалась в трудах Б.Б. Полынова Н.А. Гвоздецкого. В одну типологическую единицу включаются территориально разрозненные, но сходные относительно однородные комплексы. Ландшафт характеризуется однотипной растительностью, увлажнением, но территориально может находиться на разных континентах (ландшафт степей существует на разных материках в Северной Америке и Евразии).

> ЭКОЛОГИЯ БИОСФЕРЫ (ГЛОБАЛЬНАЯ ЭКОЛОГИЯ)

Эволюция биосферы

Биосфера (от греч. bios — жизнь и sphera — шар, сфера) — это геологическая оболочка Земли вместе с населяющими ее организмами на всех уровнях их организации; это живой покров Земли. Организмы не просто живут на поверхности планеты, они связаны со средой обитания непрекращающимися процессами обмена веществ и энергии.

Термин “биосфера” предложил австрийский ученый Э. Зюсс в 1875 г., а учение о биосфере создал русский академик В. И. Вернадский (1863-1945).

Образование биосферы на Земле обусловлено совокупностью следующих факторов:

  • 1) силы земного притяжения;
  • 2) космического излучения;
  • 3) количества кислорода и углекислого газа в атмосфере;
  • 4) интенсивности коротких ультрафиолетовых лучей;
  • 5) температуры.

По определению В. И. Вернадского, биосфера представляет собой совокупность частей земных оболочек (лито-, гидро- и атмосферы), которая заселена живыми организмами, находится под их воздействием и занята продуктами их жизнедеятельности.

Жизнь на Земле существует, потому что на Земле существует жизнь. Если бы на Земле не было живых существ, планета была бы такая же, как ядовитая парилка Венера или как остывший пустынный Марс.

Биосфера является глобальной экосистемой. Она не образует сплошного слоя с четкими границами, а как бы “пропитывает” другие сферы планеты, охватывая всю гидросферу, верхнюю часть литосферы (до 3 км) и нижнюю часть атмосферы (до 30 км) (рис. 2.1). Функциональными единицами биосферы являются экосистемы.

Рис. 2.1. Распределение живых организмов в биосфере (В. И. Коробкин, Л. В. Передельский):

  • 1 — озоновый слой; 2 — граница снегов; 3 — почва;
  • 4 — животные, обитающие в пещерах;
  • 5 — бактерии в нефтяных водах (высота и глубина даны в метрах)

По вопросу происхождения жизни среди ученых нет единого мнения. Существует несколько подходов к решению данного вопроса, которые тесно переплетаются между собой.

Креационизм. Жизнь была создана Творцом. Творец — это Бог, Идея, Высший разум и др.

Гипотеза стационарного состояния. Жизнь, как и сама Вселенная, существовала всегда, поскольку не имеет начала и конца. Вместе с тем существование или образование отдельных тел (звезд, планет, организмов) ограничено во времени, они возникают, рождаются и погибают.

В настоящее время общепризнанной является теория Большого взрыва, согласно которой Вселенная существует ограниченное время, она образовалась из одной точки около 15 млрд лет назад.

Гипотеза панспермии. Жизнь на Земле была занесена из космоса и прижилась здесь после того, как на Земле сложились для этого благоприятные условия. Решение вопроса о том, как возникла жизнь в космосе, отодвигается на неопределенное время из-за объективных трудностей. Она могла быть создана Творцом, могла существовать всегда или возникнуть из неживой материи. В последнее время среди ученых появляется все больше сторонников этой гипотезы.

Другая точка зрения на процесс возникновения жизни на Земле и происхождение видов также имеет давнюю историю. В истории науки Ж. Б. Ламарк обессмертил свое имя введением в 1802 г. термина “биология” (от греч. bios — жизнь) и созданием эволюционной концепции развития природы и гипотезы о происхождении человека от обезьяноподобных предков. Однако истинным создателем учения о биологической эволюции стал Ч. Дарвин, который объяснил процесс развития и становления видов как результат естественного отбора.

На основе идеи Дарвина было развито глобальное эволюционное учение — комплекс знаний об историческом развитии живой природы.

Гипотеза абиогенеза (самозарождения живого из неживого и последующей биохимической эволюции).

А. И. Опарин полагал, что органические вещества могли создаваться в первичном океане из простых неорганических веществ. В результате накопления в океане органических веществ образовался так называемый “первичный бульон”. Затем, объединяясь, белки и другие органические молекулы образовали капли коацерватов, которые служили прообразом клеток. Капли коацерватов подвергались естественному отбору и эволюционировали. Первые организмы были гетеротрофа- ми. По мере исчерпания запасов “первичного бульона” возникли автотрофы.

К настоящему времени ни одна из существующих гипотез о происхождении жизни прямыми доказательствами не располагает.

Ученые считают, что возраст нашей Галактики 10-12 млрд лет, Солнца — 5 млрд, Земли — около 4,5 млрд лет (рис. 2.2).

Рис. 2.2. Эволюция допланетного облака (О. Ю. Шмидт и др.): а — этап превращения пылевого слоя в рой планетезималей, продолжавшийся около 104 лет; б — этап объединения роя планетезималей в планеты, длившийся около 108 лет

Аккреция вещества Земли привела к временному его разогреву и легких молекул первичной атмосферы, прежде всего водорода и гелия, рассеянных в космическом пространстве. Последующее понижение температуры в результате сильного излучения тепла привело к образованию твердой коры. Активный вулканизм мешал этому процессу, но в то же время поставлял большие количества газов, из которых образовалась вторичная атмосфера. В ней кроме водорода было много других газов (рис. 2.3).

Рис. 2.3. Схема образования простейших органических соединений из газов первичной атмосферы под воздействием ультрафиолетового излучения Солнца (М. М. Камшилов)

В течение 1 млрд лет из неорганических веществ, входящих в состав атмосферы (водорода, воды, аммиака, углекислого газа, метана), под действием солнечной энергии и высокой температуры образовались простейшие органические соединения (мономеры), в том числе и аминокислоты. В дальнейшем произошло образование короткоцепочечных полимеров, из которых для формирования живого вещества особое значение имели белковоподобные вещества — протеиноиды. Протеиноиды были исходным сырьем для образования белков, нуклеиновых кислот и липидно-коллоидных мембран.

Образование простейших органических соединений из газов первичной восстановительной атмосферы под действием УФ-излучения Солнца показано на рис. 2.3. По мере возрастающей потери водорода Н2 в космическое пространство образовывалась атмосфера, содержащая большие количества азота N2 и аммиака NH3, углекислого газа С02 (из вулканических газов и из метана СН4) и паров воды. Возможности химической эволюции на Земле показаны на рис. 2.4.

Для превращения белков, нуклеиновых кислот и липидно-коллоидных мембран в живые организмы потребовалось более миллиарда лет химической эволюции, когда осуществлялся отбор наиболее стабильных биополимеров, наличие которых предопределило появление первых примитивных прокариотических клеток. Остатки таких клеток были обнаружены в горных породах, сформировавшихся примерно 3,5 млрд лет тому назад.

Прошел еще 1 млрд лет, прежде чем образовались эукариоты, остатки которых были обнаружены в породах возрастом около 2,1 млрд лет. Эукариоты — организмы, которые уже обладают ядром (хранилищем генов), более сложными органел- лами и более совершенным способом полового размножения, когда наследственный материал сосредоточен в расходящихся парных хромосомах.

Первоначально в течение длительного времени все организмы были гетеротрофами и пищей им служили органические вещества, входящие в состав “первичного бульона”.

Возникновение и развитие автотрофов, т. е. организмов, способных синтезировать органические вещества из неорганических, явилось следующим важным этапом эволюции биосферы. Развитие автотрофных организмов проходило также в нескольких направлениях. Вероятно, первые автотрофы получали энергию для синтеза органических веществ в результате осу-

Рис. 2.4. Возможности химической эволюции на Земле (Р. В. Каплан) ществления химических процессов — это были хемавтотро- фы, разновидности которых функционируют и в настоящее время (серобактерии, нитрофицирующие бактерии и др.).

Наиболее совершенные формы автотрофных организмов — это организмы, которые под действием солнечного излучения синтезируют необходимые им органические вещества из неорганических и выделяют кислород в атмосферу в качестве побочного продукта. Это фотосинтезирующие бактерии.

Самые обычные автотрофы нашего времени — это фитопланктон и зеленые растения суши. Появление на Земле авто- трофов способствовало образованию окислительной атмосферы, одним из основных компонентов которой был кислород (состав современной атмосферы — 21% кислорода, 78,1% азота и 0,9% аргона и других газов). Динамика изменения состава атмосферы Земли отражена на рис. 2.5.

Появление в атмосфере кислорода привело к возникновению озонового слоя. Озон 03 образуется из кислорода под воздействием ультрафиолетового излучения Солнца и действует как фильтр, который поглощает губительное для белков и нуклеиновых кислот короткое ультрафиолетовое излучение и защищает Землю от него (“озоновый щит”). До появления озонового слоя эволюция живых организмов происходила в водах Мирового океана. Поверхностный слой воды защищал живые организмы от вредного воздействия ультрафиолетового излучения.

Образование озонового слоя способствовало освоению суши живыми организмами. Примерно 1 млрд лет назад большинство первичных растений свободно плавало в морской воде. Для дальнейшей эволюции растений необходимо было образование почвенного покрова на поверхности литосферы в результате воздействия поверхностных бактерий на минеральные вещества и под влиянием климатических факторов.

Этот процесс длился примерно 500 млн лет, а 450 млн лет назад почвообразовательные процессы подготовили освоение суши растениями. Первые наземные растения (папоротники,

Рис. 2.5. Эволюция биосферы: нижняя кривая — содержание в атмосфере кислорода; верхняя кривая — содержание в атмосфере углекислого газа (PAL — современный уровень);

^ — рубежи массовых вымираний

Рис. 2.5. Окончание хвощи и др.) размножались спорами и предпочитали водную среду. Переход к размножению семенами имел большое преимущество, поскольку освободил процесс размножения от связи с водной средой.

Эволюция растений, размножающихся семенами, проходила поэтапно — от голосемянных к покрытосемянным (цветковым). Значительного разнообразия наземная флора достигла в каменноугольный период (350 млн лет назад). В настоящее время насчитывается около 500 тыс. видов растений, почти половину существующих видов растений составляют покрытосемянные растения.

Самые ранние следы животных появились примерно 700 млн лет назад. Наиболее близки к предкам простейших животных одноклеточные зеленые водоросли.

В начале палеозойского периода (570 млн лет назад) фиксируется образование многих видов животных, около 30% существует и в настоящее время. Первые рыбы появляются примерно 500 млн лет назад, первые амфибии—400, а первые рептилии (пресмыкающиеся) — 250 млн лет назад.

Первые рептилии уступили место динозаврам 150 млн лет назад. В этот же период появляются и небольшие по размеру млекопитающие с шерстяным покровом.

Большого разнообразия млекопитающие достигли в кайнозойскую эру, которая началась 60-70 млн лет назад и охватывает современность; в этот же период появились приматы. Примерно 3 млн лет назад появились древнейшие люди, длинный путь развития которых привел к возникновению единственного на Земле биосоциального вида — человека.

Таким образом, современная биосфера образовалась в результате длительной эволюции под влиянием совокупности космических, геофизических и геохимических факторов. Первоначальным источником всех процессов, протекающих на Земле, было Солнце, но главную роль в становлении и последующем развитии биосферы сыграл фотосинтез — процесс превращения простейших неорганических веществ (воды, углекислого газа и минеральных элементов) в сложные органические вещества под действием солнечного света и с участием зеленых пигментов (хлорофилла).

В результате эволюционной сукцессии органического мира человек появился относительно недавно. Если весь период развития органического мира (около 4 млрд лет) сократить до одного года, в котором каждый день соответствует 11 млн лет (рис. 2.6), то в этом масштабе большую часть года (приблизительно до середины августа) занимает эволюция примитивных организмов вроде бактерий. Затем, примерно 1 сентября, т. е. 1,4 млрд лет назад, возникли первые сложные клетки, типичные для современных растений и животных. После этого эволюция пошла быстрее: все основные типы беспозвоночных появились в сентябре-октябре, а в ноябре, т. е. около 450 млн лет назад, сформировались первые позвоночные — предшественники современных рыб. “Век рыб” и “век амфибий” длились примерно по 100 млн лет и заняли почти весь ноябрь. В декабре амфибии уступили место динозаврам, которые господствовали до середины декабря, а к концу третьей недели (60 млн лет назад) стали вымирать. Их сменили птицы и млекопитающие. Наконец, 31 декабря около 16 часов (3 млн лет назад) появился человек. Нынешнее сельское хозяйство развилось за последние 2 минуты, а научно-техническая революция, начавшаяся в XVIII в., продолжается всего две секунды.

В эволюции биосферы были поворотные моменты, резко изменявшие весь ход дальнейших событий. К их числу следует отнести появление фотосинтезирующих бактерий, позвоночных, возникновение человека. С возникновением человека биологические факторы эволюции постепенно ослабляли свое действие, и ведущее значение приобрели социальные.

Понятие об экологии. Экосистемы. Биосфера. Ноосфера по Вернандскому (стр. 1 из 2)

1. ПОНЯТИЕ ОБ ЭКОЛОГИИ, ЭКОСИСТЕМАХ И БИОСФЕРЕ. НООСФЕРА ПО ВЕРНАНДСКОМУ

Понятие об экологии

Экология (от греч. Οικος — дом, жилище, хозяйство, обиталище, местообитание, родина и λόγος — понятие, учение, наука) — наука, изучающая взаимоотношения живой и неживой природы. Термин впервые предложил в книге «Общая морфология организмов» в 1866 году немецкий биолог Эрнст Геккель. Подавляющее большинство современных исследователей считает, что экология — это наука, изучающая условия существования живых организмов и взаимосвязи между организмами и средой, в которой они обитают. Более общее определение дал американский эколог Одум : «экология — это междисциплинарная область знаний, наука об устройстве многоуровневых систем в природе, обществе и их взаимосвязи».

Экология как наука решает следующие задачи:

· изучает законы и закономерности взаимодействия организмов со средой обитания;

· изучает формирование, структуру и функционирование надорганизменных биологических систем (популяция, биоценоз, биогеоценоз (экосистема), биом, биосфера);

· изучает законы и закономерности взаимодействия надорганизменных биологических систем (популяция, биоценоз, биогеоценоз (экосистема), биом, биосфера) с окружающей средой;

Решение задач, стоящих перед экологией, позволит достичь поставленных перед ней целей:

· разработка оптимальных путей взаимодействия общества и природы с учетом законов существования природы;

· прогнозирование последствий воздействия общества на природу с целью предотвращения негативных результатов.

Для решения задач она использует как собственные методы, так и методы других наук. Собственные методы экологии можно разделить на три группы: полевые , лабораторные и экспериментальные.

Экология тесно связана с такими науками, как биология, химия, математика, география, физика, эпидемиология. В последнее время активно о себе заявляют междисциплинарные комплексные области исследования.

По размерам объектов изучения экология подразделяется на следующие дисциплины: аутоэкология, популяционная экология, синэкология, ландшафтная экология, глобальная экология (мегаэкология, учение о биосфере Земли)

По отношению к предметам изучения она подразделяется на экологию микроорганизмов, грибов, растений, животных и человека; а также сельскохозяйственную, промышленную (инженерную) и общую (как теоретически обобщающую дисциплину).

С учетом среды и компонентов различают экологию суши, пресных водоемов, морей, Крайнего Севера, высокогорий, химическую (геохимическую, биохимическую).

По подходам к предмету выделяют аналитическую и динамическую экологию.

С точки зрения фактора времени рассматривают историческую и эволюционную экологию (в том числе археоэкологию).

В экологии человека выделяют социальную экологию. Центральная проблема современной экологии – это поиск оптимального взаимодействия в системе «человек –окружающая среда». Экология приобретает черты очень актуального мировоззрения, превращается в учение о выборе путей выживания человеческой популяции.

Современная экология в своей структуре имеет следующие разделы: общая экология, геоэкология, биоэкология, экология человека, социальная экология, прикладная экология.

Каждый раздел имеет свои подразделения и связи с другими частями экологии и смежными науками. Экология и охрана природы тесно связаны между собой, но если экология — это фундаментальная наука, то охрана природы относится непосредственно к практике.

Экосистемы

Экосистемой называют совокупность продуцентов, консументов и детритофагов, взаимодействующих друг с другом и с окружающей их средой посредством обмена веществом, энергией и информацией таким образом, что эта единая система сохраняет устойчивость в течение продолжительного времени.

Для естественной экосистемы характерны три признака:

· экосистема обязательно представляет собой совокупность живых и неживых компонентов;

· в рамках экосистемы осуществляется полный цикл, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие;

· экосистема сохраняет устойчивость в течение некоторого времени, что обеспечивается определенной структурой биотических и абиотических компонентов.

Главные экосистемы суши, называются наземными экосистемами, или биомами. Экосистемы гидросферы называются водными экосистемами. Экосистема состоит из различных абиотических и биотических компонентов.

Абиотические, компоненты экосистемы включают различные физические (солнечный свет, тень, испарение, ветер, температура, водные течения.) и химические факторы (макроэлементы -С, О, Н, N, P, S, Ca, Mg, K, Na, и микроэлементы — Fe ,Cu, Zn, Cl).

Биотические компоненты экосистемы подразделяются по способу питания на продуцентов (организмы, производящие органические соединения из неорганических) , консументов (организмы, получающие питательные вещества и необходимую энергию, питаясь живыми организмами — продуцентами или другими консументам) и редуцентов (организмы, получающие питательные вещества и необходимую энергию питаясь останками мертвых организмов).

Продуценты (зеленые растения) создают органические вещества в процессе фотосинтеза (химического процесса, возникающего в зеленых растениях, водорослях и многих бактериях, при котором вода и углекислый газ превращаются в кислород и продукты питания при помощи энергии солнечного света) или хемосинтеза (процесс преобразования неорганических соединений в питательные органические вещества за счет энергии химических реакций). Эти органические вещества используются продуцентами как источник энергии и как строительный материал для клеток и тканей организма.

Консументы подразделяются на: фитофаги – 1-го порядка, питающиеся исключительно живыми растениями; хищники (плотоядные) –2-го порядка, которые питаются исключительно фитофагами, 3-го порядка, питающиеся только плотоядными животными; эврифаги, которые могут поедать как растительную, так и животную пищу.

Редуценты подразделяются на: детритофаги – напрямую потребляют мертвые организмы или органические остатки. и деструкторы – разлагают мертвую органическую материю на простые неорганические соединения (процесс гниения и разложения).

Биосфера

Понятие биосферы возникло более ста лет назад. Австрийский геолог Эдуард Зюсс, говоря о различных оболочках земного шара, впервые употребил этот термин. В 1926 году были опубликованы лекции В.И. Вернадского, который определял термином те слои земной коры, которые подвергались в течение всей геологической истории влиянию живых организмов, и впервые отвёл живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая их деятельность не только в настоящее время, но и в прошлом.

В состав биосферы входят верхние слои литосферы, нижний слой атмосферы (тропосфера) и вся гидросфера, связанные между собой сложными круговоротами веществ и энергии.

Нижний предел жизни на Земле (3 км) ограничен высокой температурой земных недр, верхний предел (20 км) – жёстким излучением ультрафиолетовых лучей (всё, что находится ниже, защищено озоновым слоем). Тем не менее, на границах биосферы можно найти только микроорганизмы, наибольшая концентрация биомассы наблюдается у поверхности суши и океана, в местах соприкосновения оболочек. Организмы, составляющие биосферу, обладают способностью к размножению и распространению по планете.

Совокупная биомасса Земли составляет около 0,01% массы всей биосферы. 97 % из этого количества занимают растения, 3% – животные. Биомасса организмов, обитающих на суше, на 99,2% представлена зелеными растениями и 0,8% — животными и микроорганизмами. Напротив, в океане на долю растений приходится 6,3%, а на долю животных и микроорганизмов — 93,7% всей биомассы. Суммарная биомасса океана составляет всего 0,13% биомассы всех существ, обитающих на Земле.

Вещества и энергию, необходимую для обмена веществ, организмы черпают из окружающей среды. Ограниченные количества живой материи воссоздаются, преобразуются и разлагаются. Ежегодно, благодаря жизнедеятельности растений и животных, воспроизводится около 10% биомассы.

Выделяют несколько уровней организации живой материи:

· Молекулярный. Любая живая система проявляется на уровне взаимодействия биологических макромолекул: нуклеиновых кислот, полисахаридов, а также других важных органических веществ.

· Клеточный. Клетка — структурная и функциональная единица размножения и развития всех живых организмов, обитающих на Земле. Неклеточных форм жизни нет, а существование вирусов лишь подтверждает это правило, т.к. они могут проявлять свойства живых систем только в клетках.

· Организменный. Организм представляет собой целостную одноклеточную или многоклеточную живую систему, способную к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов, специализированных для выполнения различных функций.

· Популяционно-видовой. Под видом понимают совокупность особей, сходных по структурно-функциональной организации, имеющих одинаковый кариотип и единое происхождение и занимающих определенный ареал обитания, свободно скрещивающихся между собой и дающих плодовитое потомство, характеризующихся сходным поведением и определенными взаимоотношениями с другими видами и факторами неживой природы.

· Совокупность организмов одного и того же вида, объединенная общим местом обитания, создает популяцию как систему надорганизменного порядка. В этой системе осуществляются простейшие, элементарные эволюционные преобразования.

· Биогеоценотический. Биогеоценоз — сообщество, совокупность организмов разных видов и различной сложности организации со всеми факторами конкретной среды их обитания — компонентами атмосферы, гидросферы и литосферы.

Значение биосферы

Размещено на http://www.allbest.ru/

биосфера экологический биогеохимический загрязнение

Введение

1. Понятие, состав и структура биосферы

2. Основные функции биосферы

3. Биогеохимические круговороты веществ в биосфере

4. Пределы устойчивости биосферы

Заключение

Список используемой литературы

Введение

Та часть литосферы, гидросферы и атмосферы Земли, в которой существуют и развиваются растительные и живые организмы, называется биосферой. В ее состав входят не только растительный покров и животное население планеты, все реки и озера, водная масса океанов, но и почвенный слой, значительная часть тропосферы и самый верхний слой земной коры — зоны выветривания. На земной поверхности практически нет площадей, где отсутствует жизнь. Даже в жарких и безводных тропических пустынях или на поверхности высокогорных ледников и полярных льдов обнаружены микробы и другие микроорганизмы.

Знания о биосфере сегодня как никогда актуальны и необходимы. Человек вышел за пределы возможностей биосферы и активно преобразовывает ее. В большинстве случае подобные преобразования крайне негативно сказываются на самой биосфере.

Сегодня необходимо создание концепции сохранения биосферы, ее охраны. Только направляя усилия на сохранение природной среды хотя бы в том виде, какая она есть сейчас, мы сможем сохранить на планете условия для существования человечества.

В данной работе мы рассмотрим понятие биосферы, ее структуру, особенности эволюции, ресурсы и пределы устойчивости.

1. Понятие, состав и структура биосферы

Биосфера — глобальная экологическая система планеты, включающая в себя все живые организмы вместе со средой их обитания.

Биосфера представляет собой совокупность частей земных оболочек (лито-, гидро- и атмосферы), которая заселена живыми организмами, находится под их влиянием и занята продуктами их жизнедеятельности.

В 20-е годы XX — го столетия учение о биосфере было развито и преобразовано выдающимся естествоиспытателем академиком В.И. Вернадским. Он впервые подчеркнул исключительную роль живых организмов в образовании биосферы. По его определению, биосфера — структурная оболочка Земли, созданная самой жизнью, где не только живут, но которая преобразована живыми организмами и связана с их жизнедеятельностью. Таким образом, биосфера — это и среда жизни, и результат жизнедеятельности организмов.

Размеры биосферы. По учению В.И. Вернадского, биосфера — это область нашей планеты, в которой существует или когда-либо существовала жизнь и которая постоянно подвергается воздействию живых организмов. Поэтому биосфера представляет собой область существования не только современных экосистем, но и включает области, где находятся вещества, возникшие в результате жизнедеятельности живых организмов. Такие вещества называют биогенными. Почти весь кислород атмосферы имеет биогенное происхождение. Биогенными являются также многие полезные ископаемые (нефть, уголь, газ и др.).

Благодаря такому подходу В.И. Вернадский существенно расширил границы биосферы, включив в нее всю гидросферу (глубиной до 11 км), нижние слои атмосферы (до озонового слоя, высотой 25 — 35 км), где сосредоточен практически весь кислород, и часть литосферы до глубины залегания полезных ископаемых биогенного происхождения (8 — 10 м, реже 3 км).

Структура биосферы. Биосфера имеет иерархическую структуру. Традиционно в структуре биосферы выделяют атмосферу, гидросферу и литосферу. Атмосфера делится на слои в зависимости от температуры воздуха: ниже 0°С — альтобиосфера, выше 0 «С — тропобиосфера. Гидросфера включает в себя океанобиосферу и аквабиосферу, т.е. солено- и пресноводную среду, и также делится на слои в зависимости от освещенности: фото-, дисфото- и афотосферы. Гео(био)сфера состоит из террабиосферы (твердо-водной среды) и литобиосферы (твердо-воздушной среды). Выделенные подсферы включают экосистемы различного иерархического уровня.

Состав биосферы включает 7 глубоко разнородных частей:

живое вещество;

биогенное вещество:

косное вещество:

биокосное вещество;

вещество в радиоактивном распаде:

вещество рассеянных атомов, не связанных химическими реакциями;

вещество космического происхождения.

Живое вещество — совокупность организмов на планете (растительный и животный мир, микроорганизмы).

Биогенное вещество — совокупность веществ, возникших в результате жизнедеятельности организмов (торф, нефть, мел, природный газ и др.).

Косное вещество — совокупность веществ, в образовании которых живые организмы не участвуют, т.е. горные породы магматического, неорганического происхождения, вода,

Биокосное вещество — продукты распада и переработки горных и осадочных пород живыми организмами (почва, природные воды).

2. Основные функции биосферы

Благодаря способности трансформировать солнечную энергию в энергию химических связей, растения и другие организмы выполняют ряд фундаментальных биологических функций планетарного масштаба.

Газовая функция. Живые существа постоянно обмениваются кислородом и углекислым газом с окружающей средой в процессах фотосинтеза и дыхания. Растения сыграли решающую роль в формировании состава современной атмосферы. Они строго контролируют концентрации кислорода и углекислого газа, оптимальные для современной биоты.

Концентрационная функция. В процессе эволюции организмы научились извлекать из разбавленного водного раствора и других компонентов природной среды необходимые для них вещества, многократно увеличивая их концентрацию в своем теле.

Таким образом, пропуская через свое тело большие объемы воздуха и природных растворов, живые организмы осуществляют биогенную миграцию и концентрирование химических элементов и их соединений.

Окислительно-восстановительная функция. Многие вещества в природе крайне устойчивы и не подвергаются окислению при обычных условиях. Живые клетки обладают настолько эффективным катализатором — ферментами, что способны осуществлять многие окислительно-восстановительные реакции в миллионы раз быстрее, чем это может происходить в абиотической среде. Благодаря этому живые организмы существенно ускоряют процессы миграции химических элементов в биосфере.

Информационная функция. С появлением первых живых существ на планете появилась и активная («живая») информация, отличающаяся от той «мертвой» информации, которая является простым отражением структуры. Организмы оказались способными к получению информации путем соединения потока энергии с активной молекулярной структурой, играющей роль программы. Способность воспринимать, хранить и передавать молекулярную информацию совершила опережающую эволюцию в природе и стала важнейшим экологическим системообразующим фактором.

Перечисленные функции живого вещества образуют мощную средообразующую функцию биосферы. Деятельность живых организмов обусловила современный состав атмосферы. Растительный покров существенно определяет водный баланс, распределение влаги и климатические особенности больших пространств. Живые организмы играют ведущую роль в самоочищении воздушной и водной сред. Благодаря растениям, животным и микроорганизмам создается почва и поддерживается ее плодородие. Таким образом, биота биосферы формирует и контролирует состояние окружающей среды.

Следует четко представлять, что окружающая нас среда — это не возникшая когда-то фиксированная и непреходящая физическая должность, а живое дыхание природы, каждое мгновение создаваемое работой множества живых существ.

3. Биогеохимические круговороты веществ в биосфере

Круговорот веществ — закономерный процесс многократного участия веществ в явлениях, протекающих в биосфере планеты. Вещество, вовлеченное в круговорот, не только перемещается, но и испытывает трансформацию и нередко меняет свое физическое и химическое состояния. Особенно активную роль в ускорении круговорота и трансформации играют живые организмы.

Солнечная энергия на Земле вызывает два вида круговоротов веществ:

большой (биогеохимический) — в пределах биосферы;

малый (биотический) — в пределах элементарных экологических систем.

Большой круговорот веществ — это безостановочный планетарный процесс закономерного циклического, неравномерного во времени и пространстве перераспределения вещества, энергии и информации, многократно входящих в непрерывно обновляющиеся экологические системы биосферы.

Малый круговорот веществ развивается на основе большого и заключается в круговой циркуляции веществ между почвой, растениями, микроорганизмами и животными.

Оба круговорота взаимосвязаны и представляют собой единый процесс, который обеспечивает воспроизводство живого вещества и оказывает активное влияние на облик биосферы.

На нашей планете всегда существовал геохимический круговорот веществ, но с появлением жизни на Земле геохимические связи стали биогеохимическими — более сложными и разнообразными. Поэтому говорят о биогеохимическом круговороте веществ или биогеохимическом цикле.

Различают три основных типа биогеохимических круговоротов:

1) круговорот воды;

круговорот элементов преимущественно в газовой фазе (кислорода, углерода, азота и др.);

круговорот элементов преимущественно в твердой и жидкой фазах (фосфора и др.).

Круговорот углерода на суше начинается с фиксации углекислого газа растениями в процессе фотосинтеза.

Из СО2 и НзО образуются углеводы и высвобождается кислород, Фиксированный в растениях углерод в некоторой степени потребляется животными. Отжившие животные и растения разлагаются микроорганизмами, в результате чего углерод мертвого органического вещества окисляется до углекислого газа и снова попадает в атмосферу. Кроме того, углерод частично выделяется на всех стадиях круговорота в составе CO2 во время дыхания растений и животных. Подобный круговорот углерода совершается и в океане.

Круговорот азота (рис.). Азот, которого очень много в атмосфере, усваивается растениями лишь после соединения его с водородом или кислородом. Это, как правило, происходит в результате различных физических явлений, протекающих в атмосфере (атмосферная фиксация) и производстве (промышленная фиксация), а также в результате действия азотфиксирующих бактерий или водорослей (биофиксация). Соединения азота используются растениями и через них по пищевым цепям попадают к животным. Растительные и животные отходы, мертвые организмы разлагаются, и с помощью денитрифицирующих бактерий происходит восстановление азота и возвращение его в атмосферу.

Рис. 1 — Круговорот азота

В настоящее время сельское хозяйство и промышленность дают почти на 60% больше фиксированного азота, чем естественные наземные экосистемы, что приводит к накоплению нитратов в почве и далее в трофических цепях.

Биогеохимические круговороты веществ и связанные с ними превращения энергии являются основой динамического равновесия и устойчивости биосферы. Нормальные, ненарушенные биогеохимические циклы имеют почти круговой, почти замкнутый характер. Этим поддерживается известное постоянство и равновесие состава, количества и концентрации компонентов в биосфере, например состава атмосферного воздуха, концентрации солей в воде океанов и т.п. В свою очередь, подобное постоянство обусловливает генетическую и физиологическую приспособленность живых организмов к существованию на Земле,

4. Пределы устойчивости биосферы

Биосфера выступает как огромная, чрезвычайно сложная экосистема, работающая в стационарном режиме на основе тонкой регуляции всех составляющих ее частей и процессов.

Стабильность биосферы основывается на высоком разнообразии живых организмов, отдельные группы которых выполняют различные функции в поддержании общего потока вещества и распределении энергии, на теснейшем переплетении и взаимосвязи биогенных и абиогенных процессов, на согласовывании циклов отдельных элементов и уравновешивании емкости отдельных резервуаров. В биосфере действуют сложные системы обратных связей и зависимостей.

Однако стабильность атмосферы имеет определенные пределы, и нарушение ее регуляторных возможностей чревато серьезными последствиями.

Выступая как важнейший агент связывания и перераспределения на поверхности Земли космической энергии, живое вещество выполняет тем самым функцию космического значения.

Однако в настоящее время на Земле появилась новая сила, по мощности воздействия не уступающая суммарному действию живых организмов — человечество с его социальными законами развития и мощной техникой, позволяющей влиять на вековой ход биосферных процессов. Современное человечество использует не только огромные энергетические ресурсы биосферы, но и не биосферные источники энергии (например, атомной), ускоряя геохимические преобразования природы. Некоторые процессы, вызванные технической деятельностью человека, направлены противоположно по отношению к естественному ходу их в биосфере (рассеивание металлов, руд, углерода и др. биогенных элементов, торможение минерализации и гумификации, освобождение законсервированного углерода и его окисление, нарушение крупномасштабных процессов в атмосфере, влияющих на климат и т.п.)

Вернадский считал возможным говорить даже об автотрофной роли человека, понимая под этим возрастающие масштабы искусственного синтеза органических веществ, часто даже не имеющих аналогов в живой природе.

За последние 100 лет человечество увеличилось в 4 раза, потребление энергии в 10 раз, совокупный продукт в 17,6 раза, минерального сырья — в 29 раз. 85 % всех добытых за всю историю человечества полезных ископаемых приходится на XX век. Общее количество используемой энергии в конце века всего на 3-4 порядка величин меньше суммарной солнечной энергии поступающую на верхнюю границу атмосферы Земли. К настоящему времени 1/4 суши занята агроценозами и пастбищами и 3/4 непокрытой вековыми льдами территории оказывается в зоне прямого хозяйственного воздействия. Мировой улов рыбы достиг своего теоретического предела. На глазах происходит изменение глобального климата Земли, в результате которого могут усилиться стихийные бедствия, возрасти материальные потери, вымереть значительное число видов. В XXI веке человечество должно удвоиться. Сможет ли биосфера выдержать такую нагрузку?

Комплексное воздействие человечества на биосферу увеличивается значительно интенсивнее прироста самого человечества. Поэтому при последующем удвоении народонаселения мира нагрузка на биосферу возрастет многократно.

Почти весь XX век может быть описан динамикой экстенсивного развития: увеличением производства электроэнергии, стали, алюминия, удобрений, пестицидов, автомобилей, протяженности транспортных магистралей и много другого.

Лишь в последней четверти XX века произошли революционные изменения в стратегии экономического развития Повышение странами ОПЕК В 1973 г цен на нефть заставил главных ее покупателей — США, Японию и страны Западной Европы — срочно развивать новые технологии энергосбережения.

В течение почти десяти лет мир продолжал успешное развитие без увеличения энергозатрат. Этот пример впервые поколебал казавшийся незыблемым постулат об опережающем развитии энергетики для устойчивости экономики. С тех пор перспективы развития человечества связывают со скоростью научно-технического прогресса, направленного на получение более совершенного конечного результата с использованием все меньшего количества ресурсов.

Но, как только цена на нефть стала понижаться на мировом рынке в течение 1980-х годов, так снова наметился рост потребления энергии человечеством, а прогрессивные способы энергосбережения снова стали нерентабельными. Видимо в условиях рыночной экономики повышение цен на сырье способствует технологическому прогрессу и рациональному хозяйствованию на ограниченной Земле, хотя при этом страдают бедные страны, не обладающие собственными запасами ценных природных ресурсов.

Оборотной стороной экстенсивного развития стало загрязнение окружающей среды. Человечество никогда ранее не задумывалось о судьбе отходов жизнедеятельности, а потому и не планировало замкнутых циклов производства. Природа сама утилизировала солому, дерево, трупы животных, а то, что не подвергалось химическим превращениям, просто захоранивалось под слоем земли или ила. По сравнению с круговоротом веществ в биосфере человеческие отходы долгое время оставались незначительными. Однако многократное увеличение в течение XX века промышленного и сельского производства привело к столь же масштабному загрязнению воды, воздуха, почвы. При ограниченных размерах почти полностью заселенной планеты люди должны теперь сами обеспечивать переработку своих отходов так, чтобы не навредить биосфере.

Заключение

Биосфера — важнейшая система, значимость которой невозможно переоценить, т.к. именно биосфера является той средой, в которой человечество может существовать.

Современная структура биосферы — продукт длительной эволюции многих систем разной сложности, последовательно стремящихся к состоянию динамического равновесия. Практическое значение учения о биосфере огромно. Особенно заинтересованы в развитии этого учения здравоохранение, сельское и промысловое хозяйство и другие отрасли человеческой практики, чаще других сталкивающиеся с «ответными ударами» со стороны биосферы, вызванными неразумным или неосторожным преобразованием природы человеком.

Современная деятельность человека во многом нанесла непредвиденный ущерб окружающей среде, что в конечном итоге угрожает дальнейшему развитию самого человечества. Эти изменения на данном этапе еще не являются непоправимыми. Поэтому одна из задач современной экологии — это изучение регуляторных процессов в биосфере, создание научного фундамента ее рационального использования. Основные законы функционирования биосферы уже вырисовываются, но предстоит еще многое сделать объединенными усилиями экологов всех стран мира.

Список используемой литературы

1. Шимова, О.С. Основы экологии и экономика природопользования: Учебник / О.С. Шимова, Н.К. Соколовский. — Мн.: БГЭУ, 2001 -367 с.

2. Акимова, Т.А. Экология: Учебник для вузов / Т.А. Акимова, ВЛЗ. Хаскин. — М: ЮНИТИ, 1998, — 445 с.

3. Маврищев, В.В. Основы общей экологии: Учеб. пособие / В.В. Маврищев. — Мн.: Выш. шк., 2000, — 317 с.

4. Экология и безопасность жизнедеятельности: Учеб. пособие для вузов / Под ред. Л.А. Муравья. — М. ЮНИТИ-ДАНА, 2000. — 447 с.

5. Кормилицин, В.И. Основы экологии: Учеб, пособие / В.Ц. Кормилидин. — М.: Интерстиль. 1997. — 368 с.

6. Реймерс, Н.Ф. Охрана природы и окружающей человека среды: Словарь-справочник / Н.Ф. Реймерс. — М: Просвещение, 1992. — 320 с.

7. Охрана окружающей среды: Учеб, для техн. спец, вузов / Под ред. С.З. Белова. — М.: Высшая школа, 1991. — 319 с.

Размещено на Allbest.ru

Биосфера

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *